Samvirke mellom rullende materiell og spor
__NUMBEREDHEADINGS__
Lenke til PDF-filen: Samvirke mellom rullende materiell og spor
INNLEDNING
Studiet av de dynamiske bevegelser til det rullende materiell ved framføring på et skinnegående spor er meget komplisert. Dette har sammenheng med de dynamiske belastninger som hjulsettet utsettes for når det beveger seg på skinnegangen. Men bevegelsen til det rullende materiell følger allikevel grunnleggende dynamiske prinsipper. Dette gjelder både vertikalt og lateralt samt rulling.
Temaet samvirke rullende materiell/bane er delt inn i to kapitler. Denne første delen omhandler vognens bevegelser på sporet, herunder konisitet og vogndynamikk. Forhold knyttet til adhesjonsegenskaper og kryp er beskrevet i del 2.
Et spor blir aldri helt perfekt. Ved meget lange bølgelengder vil den geometriske linjeføringen mht. sporet lateralt og vertikalt samt i lengderetning påvirke bevegelsene til vogn og boggi . Ved korte bølgelengder vil uregelmessigheter i skinnene føre til urolige bevegelser. Riktig konstruksjon og oppbygging av sporet og underbygningen samt definert og planlagt vedlikehold vil redusere amplitudene på sporfeilene.
Det er gjennom lang tid observert at amplituden for ulike sporfeil er en funksjon av bølgelengder. Jo større bølgelengden er, jo større er vanligvis amplituden i sporfeilen. Dette er illustrert i figur 2.1 En sporfeil av type A vil oppstå langt oftere enn en sporfeil av type B for samme bølgelengde. Videre vil en sporfeil av type C med større amplitude ved lang bølgelengde oppstå like lett som en sporfeil av type A ved kort bølgelengde. Som en første tilnærming kan gjøres den antakelse at størrelsen på amplituden til en sporfeil er en funksjon av sporets bølgelengde.
SAMVIRKE RULLENDE MATERIELL/BANE
Samvirke mellom det rullende materiell og bane er et meget vidt begrep, men skal i det etterfølgende begrenses til det som kalles gangdynamikkeller gangegenskaper.
Dette omfatter:
- Bevegelser av det rullende materiell på skinnebundet spor
- Krefter mellom rullende materiell og spor (sporkrefter)
Følgende hendelser kan relateres til ovenstående:
- Avsporinger
- Slitasjeav f.eks. hjul og skinner
- Komfortfor de reisende
Følgende aspekter er relatert til gangdynamiske prinsipper:
- Sikkerhetsom en funksjon av hastighetog sporstandard
- Tillatt lastkapasitettil det rullende materiell som funksjon av påkjenninger på sporet
- Togets tillatte hastighetpå grunn av sporgeometrisk linjeføring
- Passasjerenes opplevelser av reisen samt risiko for forskyvning av lasten og dermed skader på gods
- Vedlikeholdskostnader på det rullende materiell og på sporet
Kjøreegenskapene til det rullende materiell har stor betydning for:
- Sikkerhet
- Komfortog skader på gods
- Økonomi
Gjeldende utviklingstendenser er framføring av tog med tyngre laster og med
større hastigheter. Disse aspektene er i høy grad avhengig av god
kjøredynamikk.
I forbindelse med kjøreegenskapene til det rullende materiell på skinnebundet
spor skal det beskrives noen grunnleggende begreper:
- Statisk tilstandinntreffer når det rullende materiell står stille på et perfekt spor.
- Kvasistatisk tilstander den tilstand som opptrer når det rullende materiell framføres med konstant hastighetpå et perfekt spor. Det forutsettes atdette sporet har konstant kurveradiusmed konstant overhøyde. Videre eksisterer det konstante friksjonsforhold mellom hjul og skinne. Dette medfører at alle krefter eller forskyvninger i det rullende materiell og mellom det rullende materiell og sporet er konstant hele tiden.
- Dynamisk tilstand definerer de bevegelser og tilleggskreftersom det rullende materiell utøver på grunn av sporfeil, endring av opprinnelig sporgeometri, endring av hastighetog friksjoni sporet. Selvgenererende bevegelser som f.eks. sinusforløpog ustabilt løpinngår i begrepe
Vognenes vibrasjonsmønster
I dette avsnittet skal det gis en beskrivelse av bevegelsene til det rullende materiell.
Det er 6 mulige bevegelser for alle komponenter til det rullende materiell ved framføring på et skinnegående spor. Dette gjelder for selve vognkassen, boggirammenog hjulsettet. Bevegelsene er vist samlet i figur 2.2.
Bevegelser | Engelsk betegnelse | Norsk betegnelse | |
---|---|---|---|
Translasjonsbevegelse i kjøreretningen (X -retning) | Langsgående bevegelse eller longitudinell bevegelse | X Longitudinal | Rykk i kjøreretningen |
Translasjonsbevegelse i tverretningen (Y -retning) | Sidebevegelse eller lateral bevegelse | Y Lateral | Sidesleng |
Translasjonsbevegelse vinkel rett mot sporplanet | Vertikalbevegelse | Z Vertical, bounce | Hopping |
Rotasjons -bevegelse i et plan tvers på lengderetninge) | Vognbevegelse | φ Roll, sway | Rulling |
Rotasjons bevegelse i et langsgående vertikalplan | χ Pitch | Galoppering elle
vipping | |
Rotasjons - bevegelse i selve sporplanet | ψ Yaw | Svingning |
Langsgående bevegelser eller rykkav vognene har sammenheng med
stivhetsparametre i forbindelse med buffere i en togformasjon.
Figur 2.2 Frihetsgrader mht. bevegelser til en jernbanevogn og vognens
hovedkomponenter
Jernbanevogner er vanligvis symmetriske om den vertikale akse. Dette er
illustrert i figur 2.3. Vertikale ujevnheter i sporet kan antas å påvirke vognens
bevegelser symmetrisk om denne aksen.
Figur 2.3 Det rullende materiell er vanligvis symmetrisk om den vertikal
akse.
Bevegelser mht. hoppingog galopperinger overveiende uavhengige av
laterale ujevnheter i sporet og rulling. Hopping og galoppering opptrer derim
i spor med ujevnheter i vertikal retning og er illustrert i figurene 2.4 og 2.5.
Figur 2.4 Illustrasjon mht. hoppingav vogn.
Figur 2.5 Eksempel på galoppering av vogn
På grunn av jernbanevognenes konstruksjon er vognmateriellet ikke
symmetrisk om noen lateral akse. Lateral bevegelse og rulling vil derfor
oppstå samtidig. Disse 2 sammenkoblede bevegelsene kan beskrives som
øvre rulling og nedre rulling. Bevegelsene er vist i figurene 2.6 og 2.7.
Figur 2.6 Eksempel på øvre rulling av vognmateriellet
Figur 2.7 Eksempel på nedre rulling av vognmateriellet
Ved nedre rulling har rotasjonssenteret et lavt nivå, mens for øvre rulling ligger
rotasjonssenteret høyere oppe. Frekvensen for den øvre liggende rulling vil
vanligvis være høyere enn for den lavere liggende rulling.
Svingningsmønsteret (yaw) er vist i figur 2.8
Figur 2.8 Svingningsmønsteret for en vogn
Typiske frekvensområder for ulike bevegelser er:
- Lavere rulling: 0,6 Hz
- Svingning: 0,9 Hz
- Hopping: 1,0 Hz
- Galoppering: 1,4 Hz
- Øvre rulling: 1,6 Hz
Reaksjonsmønsteret til en virkelig vogn er meget komplekst. Dette gjelder også når vognen framføres på et idealisert spor. Denne kompleksiteten er sammensatt av et antall av fysiske effekter. Det er nødvendig å beskrive samspillet av disse fysiske effektene for å få innsikt i forståelsen av hvordan vognen oppfører seg i et spor.
VOGN I FJÆR/DEMPER-SYSTEM
I det foregående avsnittet er bevegelsene til det rullende materiell beskrevet og illustrert. I dette avsnittet skal bevegelsene uttrykkes matematisk. Dette er særlig tilfelle for den vertikale bevegelse.
Masse med et enkelt fjær/demper-system
En masse som sitter på et fjæropplegg, har et system med en frihetsgrad. Bevegelsen til massen vil bli påvirket av vertikale ujevnheter i sporet. Dette er vist i figur 2.9.
Figur 2.9 Masse med et enkelt fjæropplegg og dempe
Denne massen vil utøve resonansved en naturlig frekvens som er gitt ved
formelen:
(2.1) |
Her betyr:
- fn = naturlig frekvens [Hz], [s -1]
- k = fjærstivhet[N/m]
- m = masse [kg]
Uten dempingi systemet vil bevegelsen gå mot uendelig ved den naturlige
frekvensen. Systemet utføres derfor med en demper med gitte
karakteristikker:
- c = demperkonstant[N/v], [N/m/s], [Ns/]
Det er mulig å påvirke området for resonansfrekvenser gjennom parametrene k og m. En stiv fjær vil gi høye frekvenser og en tung masse vil medføre lave frekvenser.
Det defineres følgende parameter:
(2.2) |
Dette gir:
(2.3) |
Videre defineres:
(2.4) |
Dette gir:
(2.5) |
ω0 kan identifiseres som systemets resonansfrekvens(egenfrekvens) ved en
dempingsfaktorlik 0 (ingen dempingi systemet).
ζ defineres som den relative dempingi forhold til kritisk demping:
(2.6) |
hvor
(2.7) |
Den dempede naturlige frekvens blir:
(2.8) |
Ved lave frekvenser vil massen følge uregelmessighetene i sporet ved
langsgående bevegelse. Dette gjelder både for vertikal forskyvning og for
akselerasjonsbevegelser til vognkassen. Ved massens egenfrekvens vil
aktivitetene oppnå særdeles høye verdier. Ved økende frekvenser avtar
verdiene igjen.
Det er mulig å øke nivået på dempingen. Det må imidlertid bemerkes at dempere i motsetning til fjærer er meget sensitive i høyere frekvensområder. Dette har sammenheng med at dempere reagerer som funksjon av hastighet. Fjærene får forskyvninger på grunn av uregelmessigheter i sporet.
Disse forholdene er vist i figur 2.10. Diagrammet viser forsterkningen i akselerasjonen uttrykt ved ÿ/w0til en masse som funksjon av frekvensområdet w(opptredende frekvenser). Forsterkningen i akselerasjonen er illustrert ved ulike nivåer på dempingen.
Figur 2.10 Forsterkning av akselerasjonen som funksjon av svingningsfrekvens samt nivå på dempere
Egenskapene blir:
- lav dempingmedfører stor forsterkning ved resonans
- høy dempinggir stor forsterkning i akselerasjonen ved høye frekvenser
- høy dempingoppleves som vibrerende ved høyfrekvente forstyrrelser
En viktig oppgave er derfor å konstruere den optimale demping.
Masse med fjær og demper med innebygget fjær
Overføring av energi til massen m kan reduseres betydelig ved innføring av fjær i dempersystemet. Dette er illustrert i figur 2.11. Litt elastisitet vil alltid opptre i hydrauliske dempere på grunn av sammentrykkingen av olje samt fleksible innfatningskomponenter i dempersystemet. Det er vanligvis verdifullt å benytte slike fleksible innfatningskomponenter for å få kontroll over systemet.
Figur 2.11 Modell av vogn med fjær i dempersystemet
Kombinasjonen av demper og en fjær i dempersystemet har bruddfrekvens
som er definert iht. følgende formel:
(2.9) |
Her betyr:
- kss= stivhet i fjæren til dempersystemet
- c= demperkonstant
- fb= bruddfrekvens
Ved frekvenser lavere enn bruddfrekvensen vil systemet opptre hovedsakelig
som demper. Ved frekvenser høyere enn fb vil systemet virke som en fjær. Et
passende valg av bruddfrekvens vil gi akseptabel demping ved naturlig
frekvens. Dermed vil overføring av vibrasjoner ved høyere frekvenser bli
redusert.
En verdi av kss = 10 k vil medføre et meget stivt system. Ved lavere verdier av kss blir systemet mykere. Dette medfører at overføring av energi til massen m ved høyere frekvenser minsker betraktelig. Imidlertid vil forholdet føre til en viss økning i overføring av energi ved resonansfrekvens. Det vises til figur 2.12. Y-aksen illustrerer akselerasjonen uttrykt ÿ/ω0 og x-aksen frekvensområdet uttrykt ved ω.
Det kan vises matematisk at for et system med én frihetsgrad vil den optimale
oppførselen til massen skje ved et nivå i dempingen på 20 % og en stivhet i
dempersystemet kss som er 2 ganger større enn fjærstivheten k.
Figur 2.12 Effekt av fjæropplegg i dempersystemet.
Effekten av primærfjær i systemet
Dersom det innføres en primærfjær, dannes et system med 2 masser. Dette systemet har 2 frihetsgrader og dermed 2 egenfrekvenser (naturlige frekvenser). Egenfrekvensene vil være avhengige av stivhetene til de 2 elastiske fjærene. Det vises til figur 2.13.
Figur 2.13 System med 2 masser og innebygget primærfjær og sekundærfjær
Den dynamiske bevegelse til et slikt system som beveger seg på et idealisert spor, er vist i figur 2.14.
Betydningen av 2 separate resonansfrekvenser kan observeres. Massen av boggien er mye mindre enn massen av. Samtidig er den primære fjæren mye stivere. Dette medfører at den naturlige frekvensen til sekundærfjæren blir høyere (7 Hz).
Primærfjæren filtrerer bort mye av de høyfrekvente bevegelsene som oppstår på grunn av ujevnheter i sporet. Jo mykere primærfjæren er, jo større blir effekten av filtreringen.
Figur 2.14 Dynamisk oppførsel til system med 2 masser
Det må imidlertid bemerkes at kontakten hjul - skinne i tillegg introduserer høyere frekvenser som må isoleres (beskrevet ved Hertzian-fjæren).
Toakslede vogner
En lang masse har normalt opplegg mot sporet i 2 punkter. En to-akslet vogn er et slikt eksempel. Vognen har de 2 frihetsgradene hopping og vipping (galoppering). Generelt vil disse frihetsgradene opptre i forskjellige frekvenser og ha forskjellige nivåer mht. demping. I tillegg vil de geometriske egenskapene til vognen filtrere effekter av påvirkninger fra uregelmessigheter i sporet. Ved bestemte bølgelengder i sporet vil hoppingen av vognen skje med full amplitude iht. sporets uregelmessigheter. Ved andre bølgelengder vil den vertikale amplitude i forbindelse med hoppingen bli mindre.
Vippingen av vognen vil ved bestemte bølgelengder kunne skje med full amplitude.
Det vises til figurene 2.15 og 2.16.
Figur 2.15 To-akslet vogn som utsettes for hopping.
Figur 2.16 To-akslet vogn som utsettes for vipping(galoppering)
Det forutsettes en lengde mellom akslene til vognen lik L. Den maksimale hoppingen til vognen inntreffer ved definerte bølgelengder i sporet. Likeledes vil det ved andre bølgelengder i sporet ikke være hopping i det hele tatt. Dette er vist i tabellen under. Det samme gjelder for vipping. For den illustrerte vognen vil det være 2 tilfeller av vibrasjonsmuligheter med forskjellige egenfrekvenser og nivåer på demping som oppstår på grunn av ulike bølgelengder.
Bølgelengdene som forårsaker hoppingen og vippingen, er bare avhengige av avstanden mellom punktene for uregelmessighetene i sporet. Frekvensene for når vibrasjonene opptrer, vil derfor være avhengig av hastigheten. Siden hvert tilfelle har en spesifisert egenfrekvens, vil hoppingen av vognen (massen) bli utøvet ved en bestemt hastighet. Ved andre hastigheter vil avstanden mellom uregelmessighetene i sporet kunne forårsake en filtrerende effekt ved sammenligning med et system med ekvivalent enhetsmasse.
Tabell 2.1 Hopping og vipping ved ulike bølgelengder
Bølgelengde | Hopping av vogn | Vipping av vogn |
---|---|---|
Uendelig | Maksimum | Null |
2 L | Null | Maksimum |
L | Maksimum | Null |
2L/3 | Null | Maksimum |
L/2 | Maksimum | Null |
2L/5 | Null | Maksimum |
Effekten av den geometriske filtreringen er meget kompleks, selv for idealisert
spor. Dette er illustrert i diagram 2.17. Diagrammene illustrerer
vertikalbevegelser og galoppering(vipping) for en to-akslet vogn med avstand
mellom akslene på 9 m.
Figur 2.17 Dynamisk opptreden av en typisk to-akslet vogn mht. vertikalbevegelse og galoppering.
Virkelige opptredende sporfeil kan forårsake mer komplekse bevegelser. Bevegelsene til to-akslede vogner kan forverres betydelig ved bestemte hastigheter dersom en bølgelengdeved maksimal hendelse mht. hopping eller vipping sammenfaller med en bølgelengde hvor uregelmessighetene i sporet er særdeles store.
Det faktum at både hopping og vipping opptrer i en vognkasse, medfører for passasjeren at akselerasjonen varierer langs vognkassen. En passasjer som sitter midt i vognen, vil bare føle hoppingen. En annen passasjer i endene av vognen vil i tillegg føle vertikal bevegelse fra vippingen. På grunn av dette vil sannsynligvis komforten oppfattes å være betydelig bedre midt i vognen enn i vognende. Dette er anskueliggjort i diagram 2.18.
Figur 2.18 Akselerasjoner i vognkassemidt på og i ende.
Et annet forhold er at vognen blir utsatt for momentbøyning. Amplituden av
bøyebevegelsen er naturligvis størst i vognmidt. Bøyningen kan føre til
opplevelser av vibrasjoner for passasjeren.
Effekten av boggier
En boggi vil utøve tilsvarende løpeegenskaper ved framføring som en toakslet vogn. Hopping og vipping vil også for en boggi være avhengig av bølgelengder for ujevnheter i sporet samt avstand mellom hjulsatsene til boggiene. Imidlertid vil normalt vogner med boggier være betydelig lenger enn to-akslede vogner.
Et annet viktig aspekt er at selve boggien vil utøve et geometrisk tilleggsfilter for å ta opp uregelmessigheter i sporet. Bølgelengder som påvirker hoppingen av en boggi, vil normalt ikke bli overført til vognkassegjennom sekundærfjæringen. Det vises til figur 2.19
Figur 2.19 Vogn med 2 boggier
Boggiene introduserer flere frihetsgrader enn de som påvirker hopping og vipping. Dermed oppstår flere resonansfrekvenser i systemet. Vipping av boggien ved resonansfrekvensene vil bare ha liten innflytelse på bevegelsen av selve vognkassen. Derimot vil hoppingen av boggien i frekvensområdene for resonans ha stor virkning på bevegelsen i vognkassen.
Løpeegenskapene til en vogn med boggier som framføres på et idealisert spor, er vist i figur 2.20. Som eksempel er avstanden mellom boggiene blitt holdt den samme som for en to-akslet vogn med akselavstand lik 9,0 m. I tillegg er avstanden mellom akslene i boggien lik 2,0 m. Det framkommer at bevegelsen til vognen med boggier er sammenfallende med bevegelsene til den to-akslede vognen. Det er imidlertid et fall i aktiviteten ved en frekvens på 7,5 Hz som tilsvarer en bølgelengde på 4,0 m ved hastighet lik 30 m/s. Dette er et resultat av den geometriske filtreringen av boggien. Togframføring mht. komfort blir bl.a. betydelig forbedret.
Figur 2.20 Akselerasjonsegenskaper for vognkasse med boggier
I denne diskusjonen er så langt effekten av kontakten hjul/skinne ikke berørt. Kontakten mellom hjul og skinne influerer særlig på den vertikale bevegelse. Lateral bevegelse oppstår i prinsippet av samme grunn. Men i tillegg vil det for den vertikale bevegelse genereres kinematiske bevegelser på grunn av vibrasjoner i boggiene. Frekvensen i disse vibrasjonene samt dempingen vil være avhengig av hastigheten. Noen av bevegelsene vil bli overført til vognkassen, andre ikke.
Det er allerede påpekt at høy demping oppleve s som vibrerende ved høyfrekvente bevegelser eller forstyrrelser. En viktig oppgave er derfor å optimalisere dempingen.