Forskjell mellom versjoner av «Planoverganger»

Fra Lærebøker i jernbaneteknikk
Hopp til: navigasjon, søk
(Signaler, Tegn og Symboler)
(Varsellampe)
(42 mellomliggende revisjoner av samme bruker vises ikke)
Linje 5: Linje 5:
 
== Utvikling av antall planoverganger i Norge ==
 
== Utvikling av antall planoverganger i Norge ==
  
Etter hvert som jernbanenettet ble bygget ut økte naturlig nok også antallet planoverganger, og rundt år 1950 hadde vi i Norge totalt 8 650 planoverganger. Av disse lå bare 370 i registrerte offentlige veier. Som det fremgår av figur 1 har det vært en kraftig reduksjon av antall planoverganger de siste tiår. I 1957 var det totalt ca. 8 600 planoverganger. Dette tallet er i 2022 redusert til ca. 1900 planoverganger. Reduksjonen kommer primært av at en rekke baner er nedlagt siden 1957. I tillegg har en del planoverganger blitt nedlagt ev. erstattet av over- eller undergang.
+
Etter hvert som jernbanenettet ble bygget ut økte naturlig nok også antallet planoverganger, og rundt år 1950 hadde vi i Norge totalt 8 650 planoverganger. Av disse lå bare 370 i registrerte offentlige veier. Som det fremgår av figuren har det vært en kraftig reduksjon av antall planoverganger siden den gang.
  
De ca. 1900 planovergangene i 2022 fordeler seg slik etter kategori:
+
[[Fil:Plo-antall-historisk.png]]
 +
 
 +
''Figuren viser utviklingen i antall planoverganger (inkl. planoverganger som ikke er i drift) i perioden 1957 - 2016.''
 +
 
 +
 
 +
I 2022 er ca. 1900 planoverganger i bruk på jernbanenettet. Reduksjonen fra 1957 kommer primært av at en rekke baner er nedlagt siden den gang. I tillegg har en del planoverganger blitt nedlagt ev. erstattet av over- eller undergang.
 +
 
 +
De ca. 1900 planovergangene i 2022 som er i bruk fordeler seg slik etter kategori:
  
 
{| class="wikitable"
 
{| class="wikitable"
Linje 27: Linje 34:
 
'''Planovergang''': Krysning av vei og jernbanelinje i samme plan
 
'''Planovergang''': Krysning av vei og jernbanelinje i samme plan
  
'''Midlertidig planovergang''': Planovergang som midlertid er i drift.
+
'''Midlertidig planovergang''': Planovergang som midlertidig er i drift.
  
 
'''Usikret planovergang''': Planovergang uten teknisk sikring (veisikringsanlegg eller annet anlegg som automatisk varsler ankommende tog mot planovergangen)
 
'''Usikret planovergang''': Planovergang uten teknisk sikring (veisikringsanlegg eller annet anlegg som automatisk varsler ankommende tog mot planovergangen)
Linje 97: Linje 104:
  
 
=== Signaler, tegn og symboler ===
 
=== Signaler, tegn og symboler ===
Avhengig av bakenforliggende psykologiske betingelser (mentale modeller), samt aspekter ved situasjonen, kan den samme informasjonen oppfattes både som et signal, som et tegn eller som et symbol (merk at det man omtaler som et signal i dagligtale (blinkende lys, varselsskilt etc.) ikke er signaler, men tegn.  Signaler har en sterk perseptuell basis, fordi de er kontinuerlige kvantitative indikatorer på miljøets atferd i tid og rom. Et eksempel på et "signal", er oppfattelsen av hvordan avstand mellom toget og plattformen endrer seg over tid. Tegn, derimot er arbitrære (tilfeldige), men kjente representasjoner som bærer mening i et miljø. Åpenbare eksempler her er signalsystemet for jernbanen. At gul/grønn-kombinasjon på forsignal betyr "avvik", er kjent for alle togførere. Men relasjonen mellom tegnet og det tegnet betyr er arbitrært. Symboler er meningsfulle formelle strukturer som representerer egenskaper ved miljøet. Symboler er relatert til en språklig struktur, som enten kan avtegne seg i tekst, i tale, eller i tanker. Symboler relaterer seg til den deklarative hukommelsen (det vil si "det vi kan uttrykke med ord"). Vi ser i denne inndelingen at signaler og tegn refererer til perseptuelle kvaliteter ved miljøet, mens symboler har en semantisk (språklig meningsbærende) kvalitet.
+
Avhengig av bakenforliggende psykologiske betingelser (mentale modeller), samt aspekter ved situasjonen, kan den samme informasjonen oppfattes både som et signal, som et tegn eller som et symbol (merk at det man omtaler som et signal i dagligtale (blinkende lys, varselsskilt etc.) ikke er signaler, men tegn).  Signaler har en sterk perseptuell basis, fordi de er kontinuerlige kvantitative indikatorer på miljøets atferd i tid og rom. Et eksempel på et "signal", er oppfattelsen av hvordan avstand mellom toget og plattformen endrer seg over tid. Tegn, derimot er arbitrære (tilfeldige), men kjente representasjoner som bærer mening i et miljø. Åpenbare eksempler her er signalsystemet for jernbanen. At gul/grønn-kombinasjon på forsignal betyr "avvik", er kjent for alle togførere. Men relasjonen mellom tegnet og det tegnet betyr er arbitrært. Symboler er meningsfulle formelle strukturer som representerer egenskaper ved miljøet. Symboler er relatert til en språklig struktur, som enten kan avtegne seg i tekst, i tale, eller i tanker. Symboler relaterer seg til den deklarative hukommelsen (det vil si "det vi kan uttrykke med ord"). Vi ser i denne inndelingen at signaler og tegn refererer til perseptuelle kvaliteter ved miljøet, mens symboler har en semantisk (språklig meningsbærende) kvalitet.
  
 
Grunnen til at denne inndelingen er meget sentral for å forstå atferd ved planoverganger, er at de ulike typene av informasjon tenderer til å utløse ulike typer av kognitiv kontroll. Man skiller gjerne mellom 3 typer av kognitiv kontroll, nemlig '''ferdighetsbasert''' kontroll, '''regelbasert''' kontroll og '''kunnskapsbasert''' kontroll.
 
Grunnen til at denne inndelingen er meget sentral for å forstå atferd ved planoverganger, er at de ulike typene av informasjon tenderer til å utløse ulike typer av kognitiv kontroll. Man skiller gjerne mellom 3 typer av kognitiv kontroll, nemlig '''ferdighetsbasert''' kontroll, '''regelbasert''' kontroll og '''kunnskapsbasert''' kontroll.
  
En jernbaneovergang er farlig for publikum kun i én type situasjon – nemlig i de tilfeller der det kommer et tog. Det er i disse situasjonene at det kognitive systemet heller klart i retning av lavere nivåer av kognitiv prosessering. Det vil være feilaktig å anta at slike situasjoner preges av symbolsk prosessering; altså tenkning i en språklig form (kunnskapsbasert kontroll). For det første vil en persons holdninger i minimal grad  influere atferden. Videre kan man anta at skriftlig informasjon ikke vil influere en persons atferd. Imidlertid vil tegn (signalsystem, varslingssymboler, skilt etc.) kunne influere på atferd. Dette forutsetter 1) Konsekvens, 2) Konsistens og 3) Frekvens.  At tegn bør være konsekvent innebærer at det er en kulturell betinging (læring) av relasjonen mellom tegnet og det tegnet betyr. I og med at denne sammenhengen er arbitrær må det eksistere en sterk sosiokulturell praksis som styrker sammenhengen. Overført til planoverganger ser man at kryssende tog ofte markeres med gult blinkende lys. Det er ingen sosiokulturell praksis som støtter sammenhengen mellom tegnet "gult blinkende" og atferden "stopp". Tegnmessig er denne sammenhengen meget arkaisk. Videre må tegn være konsistente, det vil si at de må benyttes på tvers av ulike situasjoner (det vil si spatialt), og at de må være like fra gang til gang (det vil si temporært). Overført til planoverganger ser man at det eksisterer en relativt lav grad av standardisering av tegnutforming, spatialt sett. Man har også sett uheldige eksempler på temporær tegnsetting (bommer som står åpne når toget passerer). Med frekvens menes her det at sammenhengen mellom tegnet og det tegnet betyr, må repeteres relativt ofte for at assosiasjonen ikke skal forsvinne fra bevisstheten (kjent som ekstinksjon). Det som har klart mest betydning for atferdsregulering er imidlertid ikke tegn (og absolutt ikke symboler), men signaler. Signaler er som nevnt "kontinuerlige kvantitative indikatorer på miljøets atferd i tid og rom". Med dette menes at signaler er det som mennesker opplever som kontinuerlig ("analog") informasjon, der det eksisterer en en-til-en sammenheng i mellom det brukeren gjør, og det som persiperes i miljøet.  Det er her en direkte sammenheng i tid og rom mellom årsak og effekt. Fordelen med denne typen informasjonsprosessering er at det ikke fordrer mentale operasjoner; man trenger ikke å tenke seg frem til en effekt, fordi effekten er direkte synlig.  For de situasjonene der det ikke eksisterer slike sammenhenger (for eksempel i tekniske systemer), er det mulig å re-representere slike sammenhenger. Overført til planoverganger er utfordringen denne: Hvordan sørge for å konstruere signaler som gir intuitiv og umiddelbar mening for brukeren? Dette er først og fremst et designproblem.
+
En jernbaneovergang er farlig for publikum kun i én type situasjon – nemlig i de tilfeller der det kommer et tog. Det er i disse situasjonene at det kognitive systemet heller klart i retning av lavere nivåer av kognitiv prosessering. Det vil være feilaktig å anta at slike situasjoner preges av symbolsk prosessering; altså tenkning i en språklig form (kunnskapsbasert kontroll). For det første vil en persons holdninger i minimal grad  influere atferden. Videre kan man anta at skriftlig informasjon ikke vil influere en persons atferd. Imidlertid vil tegn (signalsystem, varslingssymboler, skilt etc.) kunne influere på atferd. Dette forutsetter 1) konsekvens, 2) konsistens og 3) frekvens.  At tegn bør være konsekvent innebærer at det er en kulturell betinging (læring) av relasjonen mellom tegnet og det tegnet betyr. I og med at denne sammenhengen er arbitrær må det eksistere en sterk sosiokulturell praksis som styrker sammenhengen. Overført til planoverganger ser man at kryssende tog ofte markeres med gult blinkende lys. Det er ingen sosiokulturell praksis som støtter sammenhengen mellom tegnet "gult blinkende" og atferden "stopp". Tegnmessig er denne sammenhengen meget arkaisk. Videre må tegn være konsistente, det vil si at de må benyttes på tvers av ulike situasjoner (det vil si spatialt), og at de må være like fra gang til gang (det vil si temporært). Overført til planoverganger ser man at det eksisterer en relativt lav grad av standardisering av tegnutforming, spatialt sett. Man har også sett uheldige eksempler på temporær tegnsetting (bommer som står åpne når toget passerer). Med frekvens menes her det at sammenhengen mellom tegnet og det tegnet betyr, må repeteres relativt ofte for at assosiasjonen ikke skal forsvinne fra bevisstheten (kjent som ekstinksjon). Det som har klart mest betydning for atferdsregulering er imidlertid ikke tegn (og absolutt ikke symboler), men signaler. Signaler er som nevnt "kontinuerlige kvantitative indikatorer på miljøets atferd i tid og rom". Med dette menes at signaler er det som mennesker opplever som kontinuerlig ("analog") informasjon, der det eksisterer en en-til-en sammenheng i mellom det brukeren gjør, og det som persiperes i miljøet.  Det er her en direkte sammenheng i tid og rom mellom årsak og effekt. Fordelen med denne typen informasjonsprosessering er at det ikke fordrer mentale operasjoner; man trenger ikke å tenke seg frem til en effekt, fordi effekten er direkte synlig.  For de situasjonene der det ikke eksisterer slike sammenhenger (for eksempel i tekniske systemer), er det mulig å re-representere slike sammenhenger. Overført til planoverganger er utfordringen denne: Hvordan sørge for å konstruere signaler som gir intuitiv og umiddelbar mening for brukeren? Dette er først og fremst et designproblem.
  
 
Det eksisterer flere mulige grensesnitt mellom mennesket og faresituasjonen (kryssende spor) på en planovergang. Det mest umiddelbare er grensesnittet mellom personen/kjøretøyet og toget (hvordan skape en opplevelse av en-til-en sammenheng mellom toget som nærmer seg og personen eller kjøretøyet, på tross av at man ikke kan se toget fysisk). Imidlertid åpner man løsningsrommet hvis man også betrakter grensesnittet imellom personen/kjøretøyet og fysiske sperringer. Gjør man det umulig å fysisk krysse sporet når toget kommer, så blir det sentrale grensesnittet ikke mot toget i seg selv, men mot den fysiske sperren.
 
Det eksisterer flere mulige grensesnitt mellom mennesket og faresituasjonen (kryssende spor) på en planovergang. Det mest umiddelbare er grensesnittet mellom personen/kjøretøyet og toget (hvordan skape en opplevelse av en-til-en sammenheng mellom toget som nærmer seg og personen eller kjøretøyet, på tross av at man ikke kan se toget fysisk). Imidlertid åpner man løsningsrommet hvis man også betrakter grensesnittet imellom personen/kjøretøyet og fysiske sperringer. Gjør man det umulig å fysisk krysse sporet når toget kommer, så blir det sentrale grensesnittet ikke mot toget i seg selv, men mot den fysiske sperren.
  
=== Anbefalinger ved informasjonsbruk ved overganger ===
+
=== Anbefalinger ved informasjonsbruk ved planoverganger ===
  
 
* Signaler: Ja, så mye som mulig
 
* Signaler: Ja, så mye som mulig
* Tegn: Ja, men ta hensyn til konsekvens,konsistens og frekvens
+
* Tegn (f.eks. lyssignaler): Ja, men ta hensyn til konsekvens,konsistens og frekvens
* Symboler: Nei – bør unngås
+
* Symboler (skilt): Nei – bør unngås
  
 
= Planovergangstyper =
 
= Planovergangstyper =
 
== Konstruksjonsprinsipper ==
 
== Konstruksjonsprinsipper ==
Planovergang anlegges med dekke utført i følgende materialer:
+
En planovergang anlegges med dekke utført i følgende materialer:
 
[[Fil:1125px-Strail.png|thumb|300px|Figur: Planovergang (Strail) med gummielementer]]
 
[[Fil:1125px-Strail.png|thumb|300px|Figur: Planovergang (Strail) med gummielementer]]
 
[[Fil:Bodan.png|thumb|300px|Figur: Planovergang (Bodan) med betongelementer]]
 
[[Fil:Bodan.png|thumb|300px|Figur: Planovergang (Bodan) med betongelementer]]
Linje 265: Linje 272:
  
 
== Varsellampe ==
 
== Varsellampe ==
Hvis det forøvrig ligger til rette kan det på fjernstyrte strekninger anordnes varsellampe etter anmodning fra grunneier eller bruksberettigede. Varsellampe kan anordnes der annen utvidet sikring ikke kan komme på tale av økonomiske eller andre grunner. Dette er en sikringsmåte som har flere svakheter og benyttes kun i spesielle tilfeller.
+
Hvis det for øvrig har ligget til rette, har det på fjernstyrte strekninger blitt anordnet varsellampe etter anmodning fra grunneier eller bruksberettigede. Varsellampe har blitt anordnet der annen utvidet sikring ikke kan komme på tale av økonomiske eller andre grunner. Dette er en sikringsmåte som har flere svakheter og benyttes kun i spesielle tilfeller.
  
Varsellampen skal plasseres på en ca. 2 m høy stolpe og slik at den lyser langs veien, og slik at den blir minst mulig synlig fra linjen. Varsellampen bør styres av de nærmeste blokksporfelter. Når blokksporfeltene er fri, viser varsellampen hvitt fast lys (normalstilling). Når et av blokksporfeltene belegges, slokker varsellampen. Varsellampen skal slokke når toget er minimum 1 min. kjøretid fra planovergangen, regnet for hurtigste tog. Varsellampen registrerer ikke togets kjøreretning og forblir slukket en tid etter at toget har passert planovergangen.
+
Varsellampen er plassert på en ca. 2 m høy stolpe og slik at den lyser langs veien, og slik at den blir minst mulig synlig fra linjen. Varsellampen bør styres av de nærmeste blokksporfelter. Når blokksporfeltene er fri, viser varsellampen hvitt fast lys (normalstilling). Når et av blokksporfeltene belegges, slokker varsellampen. Varsellampen skal slokke når toget er minimum 1 min. kjøretid fra planovergangen regnet for hurtigste tog. Varsellampen registrerer ikke togets kjøreretning og forblir slukket en tid etter at toget har passert planovergangen.
 +
 
 +
[[Fil:Skilt_for_fjøslykt1.JPG|400px]] [[Fil:Plo_randsfj.banen4.jpg|400px]]
  
 
== Enkelt veisignalanlegg ==
 
== Enkelt veisignalanlegg ==
Linje 294: Linje 303:
 
''Figur: Definisjon av siktlengde (S) og den kjørelengde (L) som kjøretøyet trenger for å komme over planovergangen i løpet nødvendig kjøretid (t)''
 
''Figur: Definisjon av siktlengde (S) og den kjørelengde (L) som kjøretøyet trenger for å komme over planovergangen i løpet nødvendig kjøretid (t)''
  
Siktlengdekravet ble definert som den siktlengden langs linjen som er tilstrekkelig til at bilen kan rekke over før et tog som befant seg utenfor siktavstand kan nå frem til overgangen. Siktlengdekravet ble basert på togets over planovergangen, den lengden L kjøretøyet må kjøre for å være i sikkerhet på den andre siden av planovergangen og en tung bils akselerasjonsevne. Hva som menes med L er vist på figuren. På samme figur er det vist hvordan nødvendig siktlengde måles ut i marken.
+
Siktlengdekravet ble definert som den siktlengden langs linjen som er tilstrekkelig til at bilen kan rekke over før et tog som befant seg utenfor siktavstand kan nå frem til overgangen. Siktlengdekravet ble basert på togets kjørehastighet over planovergangen, den lengden L kjøretøyet må kjøre for å være i sikkerhet på den andre siden av planovergangen og en tung bils akselerasjonsevne. Hva som menes med L er vist på figuren. På samme figur er det vist hvordan nødvendig siktlengde måles ut i marken.
  
 
=== Siktmodellen fra 2001 ===
 
=== Siktmodellen fra 2001 ===
Linje 334: Linje 343:
 
Endringen resulterte i et nytt kapittel i Overbygning/Vedlikehold (JD532) kapittel 10. Reglene inneholdt:
 
Endringen resulterte i et nytt kapittel i Overbygning/Vedlikehold (JD532) kapittel 10. Reglene inneholdt:
  
Nye krav til sikkerhetstiltak ved planoverganger (gjelder siktkrav, skilting, signalering og øvrige tiltak).
+
* Nye krav til sikkerhetstiltak ved planoverganger (gjelder siktkrav, skilting, signalering og øvrige tiltak).
Konsekvens for bruker
+
* Konsekvens for bruker
Nye vedlegg med tiltaksoversikt, skiltveileder, anbefalt veigeometri mv.
+
* Nye vedlegg med tiltaksoversikt, skiltveileder, anbefalt veigeometri mv.
Økt krav til skilting og noe forlengede siktkrav ved lengre/tyngre kjøretøyer
+
* Økt krav til skilting og noe forlengede siktkrav ved lengre/tyngre kjøretøyer
  
 
==== Praktisk adferdsmodell ====
 
==== Praktisk adferdsmodell ====
Linje 440: Linje 449:
 
* personbil/større personbil/mindre lastebil t = 5 s
 
* personbil/større personbil/mindre lastebil t = 5 s
 
* mindre/lettere landbruks- eller skogbrukskjøretøy t = 12 s
 
* mindre/lettere landbruks- eller skogbrukskjøretøy t = 12 s
* øvrige kjøretøyer (eks. tyngre lastebil/trailer/tømmervogntog,
+
* øvrige kjøretøyer (eks. tyngre lastebil/trailer/tømmervogntog, traktor med tungt lastet tilhenger etc. t = 35 s <sup>1</sup>)
* traktor med tungt lastet tilhenger etc. t = 35 s <sup>1</sup>)
 
  
 
<sup>1</sup>) I praksis kan det vise seg at dimensjonering for disse kjøretøyene, siktlengde for t = 35 s, i mange tilfeller ikke kan tilfredstilles. Det skal i disse tilfellene i tillegg til størst mulig oppnåelig siktlengde, iverksettes andre tiltak for å bedre sikkerheten (øvrige tiltak vurderes i tråd med listen nedenfor).
 
<sup>1</sup>) I praksis kan det vise seg at dimensjonering for disse kjøretøyene, siktlengde for t = 35 s, i mange tilfeller ikke kan tilfredstilles. Det skal i disse tilfellene i tillegg til størst mulig oppnåelig siktlengde, iverksettes andre tiltak for å bedre sikkerheten (øvrige tiltak vurderes i tråd med listen nedenfor).
Linje 458: Linje 466:
  
 
===== Usikrede planoverganger hvor siktkrav ikke ivaretatt =====
 
===== Usikrede planoverganger hvor siktkrav ikke ivaretatt =====
I de tilfeller der siktkrav ikke kan tilfredstilles (for eksempel som følge av at sikthindre vil være kostbare, ev. vanskelig å fjerne) skal det i tillegg til størst mulig siktlengde, også iverksettes andre tiltak (vurderes ut fra utdrag av liste i avsnitt 5).
+
I de tilfeller der siktkrav ikke kan tilfredstilles (for eksempel som følge av at sikthindre vil være kostbare, ev. vanskelig å fjerne) skal det i tillegg til størst mulig siktlengde, også iverksettes andre tiltak (vurderes ut fra utdrag av egen tiltaksliste).
  
Også i de tilfeller hvor veggeometrien (ved for eksempel stigningsforhold og krysningsvinkel) forventes å gi økt kjøretid og ev. vanskeliggjøre siktforhold skal siktkravene kombineres med andre tiltak (avsnitt 5).
+
Også i de tilfeller hvor veigeometrien (ved for eksempel stigningsforhold og krysningsvinkel) forventes å gi økt kjøretid og ev. vanskeliggjøre siktforhold skal siktkravene kombineres med andre tiltak (egen tiltaksliste).
  
 
===== Måling av sikt =====
 
===== Måling av sikt =====
Linje 518: Linje 526:
 
* Forbedre kunnskapen om og kontrollen med hvilke typer kjøretøy som benytter planovergangen
 
* Forbedre kunnskapen om og kontrollen med hvilke typer kjøretøy som benytter planovergangen
 
* Forbedre kunnskapen om trafikkmengdene på planovergangen
 
* Forbedre kunnskapen om trafikkmengdene på planovergangen
 
Kom gjerne med innspill til visitasjonsrutiner, forslag til skjema, hvor dette bør plasseres i styringssystemet mv.
 
  
 
I tillegg til regelverk for visitasjon vedr. planoverganger, bør det lokalt utarbeides prosedyrer eller lignende for å ivareta regler, registreringer, rapportering og oppfølging mv.
 
I tillegg til regelverk for visitasjon vedr. planoverganger, bør det lokalt utarbeides prosedyrer eller lignende for å ivareta regler, registreringer, rapportering og oppfølging mv.
Linje 534: Linje 540:
  
 
* Bruksbegrensninger
 
* Bruksbegrensninger
MERKNAD: mange av punktene under bør gjennomførs også der krav til sikt og skilt tilfredstilles …)
+
MERKNAD: Mange av punktene under bør gjennomførs også der krav til sikt og skilt tilfredstilles.
 
# avtale om bruk
 
# avtale om bruk
 
# bruker varsler om kjøring over planovergang
 
# bruker varsler om kjøring over planovergang
 
# låsing av grind
 
# låsing av grind
 
# fjerne lemmer
 
# fjerne lemmer
# bruksbegrensing lange kjøretøy
+
# bruksbegrensing for lange kjøretøy
 
# parkeringsplass på ”riktig side” av sporet, kryssing av spor til fots
 
# parkeringsplass på ”riktig side” av sporet, kryssing av spor til fots
 
# vakt etter avtale (kontakt med togleder)
 
# vakt etter avtale (kontakt med togleder)
Linje 546: Linje 552:
 
* Nye varslingssystemer
 
* Nye varslingssystemer
 
* Økt siktlengde utover krav (i tillegg til fri sikt for eksempel ved bruk av speil)
 
* Økt siktlengde utover krav (i tillegg til fri sikt for eksempel ved bruk av speil)
* Skilting for veitrafikanter der veitrafikanter med lange/tunge transporter henstilles om å ringe togleder (txp dersom strekningen ikke er fjernstyrt) før de passerer planovergangen. Det kan dermed også bli aktuelt å vurdere
+
* Skilting for veitrafikanter der veitrafikanter med lange/tunge transporter henstilles om å ringe togleder (txp dersom strekningen ikke er fjernstyrt) før de passerer planovergangen. Det kan dermed også bli aktuelt å vurdere togleders og txps rolle i forbindelse med planovergangskryssinger, og ev. endrede rutiner mv..
togleders og txps rolle i forbindelse med planovergangskryssinger, og ev. endrede rutiner mv..
 
 
* Sikring av planovergang
 
* Sikring av planovergang
 
* Bygging av planskilt krysning
 
* Bygging av planskilt krysning
Linje 579: Linje 584:
 
=== Endringer i siktmodellen 1.1.2006 ===
 
=== Endringer i siktmodellen 1.1.2006 ===
  
I TRV-versjon 1.1.2006 ble det siktmåling ved planoverganger spesifisert til måleavstand 4,0 m fra spormidt og målehøyde 1,8 m fra siktepunkt for planoverganger benyttet kun av fotgjengere. Det ble utarbeidet et nytt vedlegg ”Registreringsskjema visitasjon av planoverganger”. Tidligere hadde det i hver region blitt benyttet ulike registreringsskjemaer ved visitasjon av planoverganger. Nytt felles registreringsskjema gjorde registreringen enhetlig og enklere mht. registreringer i Banedata. Skjemaet ble utarbeidet i samarbeide med prosjektgruppen ledet av IU (Infrastruktur Utbygging i Jernbaneverket) for koordinering av tiltak ved planoverganger (tidligere ”Planovergangsprosjektet”).
+
I TRV-versjon 1.1.2006 ble siktmåling ved planoverganger spesifisert til måleavstand 4,0 m fra spormidt og målehøyde 1,8 m fra siktepunkt for planoverganger benyttet kun av fotgjengere. Det ble utarbeidet et nytt vedlegg ”Registreringsskjema visitasjon av planoverganger”. Tidligere hadde det i hver region blitt benyttet ulike registreringsskjemaer ved visitasjon av planoverganger. Nytt felles registreringsskjema gjorde registreringen enhetlig og enklere mht. registreringer i Banedata. Skjemaet ble utarbeidet i samarbeide med prosjektgruppen ledet av IU (Infrastruktur Utbygging i Jernbaneverket) for koordinering av tiltak ved planoverganger (tidligere ”Planovergangsprosjektet”).
  
 
=== Endringer i siktmodellen 1.1.2007 ===
 
=== Endringer i siktmodellen 1.1.2007 ===
Linje 611: Linje 616:
 
Vvurdering av endringen:
 
Vvurdering av endringen:
  
I perioden 1991-2001 er det registrert 150 planovergangsulykker hvorav 3 ulykker der fotgjengere har vært involvert. 2 av fotgjengerulykkene skjedde på planoverganger uten sikringsanlegg med 1 død og 1 alvorlig skadet som konsekvens. Ved å endre beslutningspunktet for kryssing fra 4,0 m til 2,5 m tilpasses modellen kun allerede etablert atferd. I tillegg har man på denne typen planovergang normalt lavt støynivå og man vil også kunne oppfatte lyden av toget (tuting, hjulstøy, motorstøy, skinnelyd). Definisjonen av en egen modell for denne typen planoverganger skulle dermed ivareta det sikkerhetsnivået som den udifferensierte modellen for fotgjengere i JD 532 foreskriver. Ny modell vil bli vurdert implementert i JD 532 ved neste revisjon (01.01.07).
+
''I perioden 1991-2001 er det registrert 150 planovergangsulykker hvorav 3 ulykker der fotgjengere har vært involvert. 2 av fotgjengerulykkene skjedde på planoverganger uten sikringsanlegg med 1 død og 1 alvorlig skadet som konsekvens. Ved å endre beslutningspunktet for kryssing fra 4,0 m til 2,5 m tilpasses modellen kun allerede etablert atferd. I tillegg har man på denne typen planovergang normalt lavt støynivå og man vil også kunne oppfatte lyden av toget (tuting, hjulstøy, motorstøy, skinnelyd). Definisjonen av en egen modell for denne typen planoverganger skulle dermed ivareta det sikkerhetsnivået som den udifferensierte modellen for fotgjengere i JD 532 foreskriver. Ny modell vil bli vurdert implementert i JD 532 ved neste revisjon (01.01.07).''
  
 
=== Endringer i siktmodellen 29.8.2014 ===
 
=== Endringer i siktmodellen 29.8.2014 ===
Linje 654: Linje 659:
 
==== Nødnummermerking ====
 
==== Nødnummermerking ====
  
I forbindelse med Sikkerhetstilrådning JB nr. 2018/15T fra Statens havarikommisjon for transport har Bane NOR fått følgende sikkerhetstilrådning: "Statens havarikommisjon for transport tilrår Statens jernbanetilsyn å anbefale Bane NOR SF å merke alle planoverganger med nødnummer og stedsangivelse."
+
I forbindelse med Sikkerhetstilrådning JB nr. 2018/15T fra Statens havarikommisjon for transport har Bane NOR fått følgende sikkerhetstilrådning:
 +
 
 +
''Statens havarikommisjon for transport tilrår Statens jernbanetilsyn å anbefale Bane NOR SF å merke alle planoverganger med nødnummer og stedsangivelse.''
  
 
Bane NOR har derfor utarbeidet et utkast til nødnummermerke som skal settes opp på planoverganger hvor det er mobildekning. Plassering må tilpasses stedlige forhold.
 
Bane NOR har derfor utarbeidet et utkast til nødnummermerke som skal settes opp på planoverganger hvor det er mobildekning. Plassering må tilpasses stedlige forhold.
Linje 701: Linje 708:
 
På bakgrunn av opplysninger i endringsforslaget, opplysninger fra Felleskjøpet i Trondheim og målinger gjort på traktorer hos Drift i Bane NOR på Marienborg, finnes følgende avstander fra førersetet og frem til enden av kjøretøyet:
 
På bakgrunn av opplysninger i endringsforslaget, opplysninger fra Felleskjøpet i Trondheim og målinger gjort på traktorer hos Drift i Bane NOR på Marienborg, finnes følgende avstander fra førersetet og frem til enden av kjøretøyet:
  
    5,20 m Opplysning fra endringsforslaget.
+
* 5,20 m Opplysning fra endringsforslaget.
    4,5 m + løfteredskap ~ 5,5 - 6,0 m Felleskjøpet i Trondheim 1)
+
* 4,5 m + løfteredskap ~ 5,5 - 6,0 m Felleskjøpet i Trondheim <sup>1)</sup>
    6,6 m Meget stor traktorgraver i Bane NOR 2)
+
* 6,6 m Meget stor traktorgraver i Bane NOR <sup>2)</sup>
    4,9 m Massey Ferguson 3075 traktor 3)
+
* 4,9 m Massey Ferguson 3075 traktor <sup>3)</sup>
  
1) Felleskjøpet i Trondheim har målt avstanden fra førersetet i en "normal" landbrukstraktor i dag og til helt fremme på lasteren, til 4,5 m. I tillegg kommer løfteredskapet/utstyret og f.eks. rundball. Dette vil kunne gi en total lengde på rundt 6 m.
+
<sup>1)</sup> Felleskjøpet i Trondheim har målt avstanden fra førersetet i en "normal" landbrukstraktor i dag og til helt fremme på lasteren, til 4,5 m. I tillegg kommer løfteredskapet/utstyret og f.eks. rundball. Dette vil kunne gi en total lengde på rundt 6 m.
  
2) Avstanden fra førersetet til forkant snøkost på en Huddig 1260B traktorgraver som Bane NOR Drift har på Marienborg, er målt til 6,2 m inklusive kosten, men 6,6 m hvis et deksel inkluderes.
+
<sup>2)</sup> Avstanden fra førersetet til forkant snøkost på en Huddig 1260B traktorgraver som Bane NOR Drift har på Marienborg, er målt til 6,2 m inklusive kosten, men 6,6 m hvis et deksel inkluderes.
  
3) En Massey Ferguson 3075 traktor (på Marienborg) er målt til 4,9 m fra førersetet og frem til fronten på en skuffe.
+
<sup>3)</sup> En Massey Ferguson 3075 traktor (på Marienborg) er målt til 4,9 m fra førersetet og frem til fronten på en skuffe.
  
 
Alle de fremkomne avstandene er større enn 4,2 m som er største lengde på hva avstanden fra førersetet og frem til enden på en landbruksmaskin kan være i dag, for at det ikke skal bli sammenstøt mellom kjøretøy og tog.
 
Alle de fremkomne avstandene er større enn 4,2 m som er største lengde på hva avstanden fra førersetet og frem til enden på en landbruksmaskin kan være i dag, for at det ikke skal bli sammenstøt mellom kjøretøy og tog.
Linje 720: Linje 727:
 
Statistikk fra Synergi på antall tilløp til og sammenstøt mellom traktor og tog de siste 15 årene (2004 – 20.02.2019) på usikrede planoverganger, viser:
 
Statistikk fra Synergi på antall tilløp til og sammenstøt mellom traktor og tog de siste 15 årene (2004 – 20.02.2019) på usikrede planoverganger, viser:
  
    Totalt antall usikrede planoverganger: 969 (pr. 31.12.2018) hvorav 249 i daglig bruk. (T.V.Fagervold)
+
* Totalt antall usikrede planoverganger: 969 (pr. 31.12.2018) hvorav 249 i daglig bruk. (T.V.Fagervold)
    Totalt antall tilløp til sammenstøt traktor/tog på usikrede planoverganger: 262
+
* Totalt antall tilløp til sammenstøt traktor/tog på usikrede planoverganger: 262
    Totalt antall sammenstøt traktor/tog på usikrede planoverganger: 12 (1 død, 2 personskader)
+
* Totalt antall sammenstøt traktor/tog på usikrede planoverganger: 12 (1 død, 2 personskader)
  
 
Dette gir:
 
Dette gir:
  
    0,00083 sammenstøt traktor/tog pr. plo og år (12/969/15)
+
* 0,00083 sammenstøt traktor/tog pr. plo og år (12/969/15)
    0,01803 tilløp til sammenstøt traktor/tog pr. plo og år (262/969/15)
+
* 0,01803 tilløp til sammenstøt traktor/tog pr. plo og år (262/969/15)
  
 
Disse tallene viser at det er behov for å endre kravene til måling av sikt for traktorer.
 
Disse tallene viser at det er behov for å endre kravene til måling av sikt for traktorer.
Linje 737: Linje 744:
 
På grunnlag av innhentede opplysninger om lengde på «normale» landbruksmaskiner/traktorer og vurderingene som er gjort, foreslår Teknologi to tillegg i Overbygning/Vedlikehold/Planoverganger, avsnitt 2.1.1 Måling av sikt punkt a):
 
På grunnlag av innhentede opplysninger om lengde på «normale» landbruksmaskiner/traktorer og vurderingene som er gjort, foreslår Teknologi to tillegg i Overbygning/Vedlikehold/Planoverganger, avsnitt 2.1.1 Måling av sikt punkt a):
  
    I første setning tilføyes «normalt»: Sikt skal normalt måles i avstand 6,0 m fra spormidt (~ 5,25 fra nærmeste skinne) i det aktuelle kjørefelt.
+
I første setning tilføyes «normalt»: Sikt skal normalt måles i avstand 6,0 m fra spormidt (~ 5,25 fra nærmeste skinne) i det aktuelle kjørefelt.
  
    Ny setning: Der siktkrav fremkommer som følge av «Traktor ute henger» eller «Traktor m/henger etc.» skal sikt måles i avstand 7,8 m fra spormidt (~ 7,05 m fra nærmeste skinne) i det aktuelle kjørefeltet.
+
Ny setning: Der siktkrav fremkommer som følge av «Traktor ute henger» eller «Traktor m/henger etc.» skal sikt måles i avstand 7,8 m fra spormidt (~ 7,05 m fra nærmeste skinne) i det aktuelle kjørefeltet.
  
 
====  Andre endringer ====
 
====  Andre endringer ====
Linje 763: Linje 770:
 
Disse to forutsetningene innføres som fotnoter til nødnummermerke i tabellen i vedlegg Veiledning sikringmetoder og tiltak, 2.1 Fysiske sikringstiltak.
 
Disse to forutsetningene innføres som fotnoter til nødnummermerke i tabellen i vedlegg Veiledning sikringmetoder og tiltak, 2.1 Fysiske sikringstiltak.
  
Følgende ajourførte tabell anbefales derfor lagt inn i teknisk regelverk:
+
Følgende ajourførte tabell anbefales derfor lagt inn i Teknisk regelverk:
  
  
Linje 1 106: Linje 1 113:
 
Modellen tar ikke hensyn til ekstremt dårlige kjøreforhold som for eksempel islagt kjørebane eller tåke.
 
Modellen tar ikke hensyn til ekstremt dårlige kjøreforhold som for eksempel islagt kjørebane eller tåke.
  
For veggeometri (lengdeprofiler, veglinje og vegbredde) er det gitt anbefalinger i [[Overbygning/Vedlikehold/Planoverganger/Vedlegg/Veiledning veggeometri|Vedlegg/Veiledning veggeometri]].
+
For veigeometri (lengdeprofiler, veglinje og vegbredde) er det gitt anbefalinger i en egen veiledning til [https://trv.banenor.no/wiki/Overbygning/Vedlikehold/Planoverganger/Vedlegg/Veiledning_veigeometri Teknisk regelverk].
  
 
= Planovergangssikkerhet =
 
= Planovergangssikkerhet =
  
 
== Planovergangsulykker ==
 
== Planovergangsulykker ==
 +
 +
=== Planovergangsulykker i Europa ===
 +
 +
Tabellen viser utviklingen av antall drepte på planoverganger i europeiske land i perioden 2011-2020 (kilde: Eurostat).
 +
 +
{| class="wikitable" style="text-align:right;"
 +
|-
 +
! style="text-align:left;" | Årstall
 +
! 2011
 +
! 2012
 +
! 2013
 +
! 2014
 +
! 2015
 +
! 2016
 +
! 2017
 +
! 2018
 +
! 2019
 +
! 2020
 +
|-
 +
| style="text-align:left;" | EU - 27 land (fra 2020)
 +
| 506
 +
| 563
 +
| 498
 +
| 495
 +
| 465
 +
| 424
 +
| 456
 +
| 442
 +
| 432
 +
| 350
 +
|-
 +
| style="text-align:left;" | Belgia
 +
| 16
 +
| 18
 +
| 13
 +
| 21
 +
| 14
 +
| 12
 +
| 12
 +
| 15
 +
| 15
 +
| 13
 +
|-
 +
| style="text-align:left;" | Bulgaria
 +
| 7
 +
| 15
 +
| 11
 +
| 11
 +
| 6
 +
| 5
 +
| 11
 +
| 5
 +
| 7
 +
| 9
 +
|-
 +
| style="text-align:left;" | Tsjekkia
 +
| 34
 +
| 47
 +
| 36
 +
| 46
 +
| 36
 +
| 34
 +
| 36
 +
| 47
 +
| 46
 +
| 44
 +
|-
 +
| style="text-align:left;" | Danmark
 +
| 2
 +
| 5
 +
| 5
 +
| 5
 +
| 2
 +
| 2
 +
| 2
 +
| 3
 +
| 1
 +
| 0
 +
|-
 +
| style="text-align:left;" | Tyskland
 +
| 56
 +
| 79
 +
| 59
 +
| 67
 +
| 61
 +
| 50
 +
| 73
 +
| 66
 +
| 55
 +
| 48
 +
|-
 +
| style="text-align:left;" | Estland
 +
| 15
 +
| 10
 +
| 11
 +
| 5
 +
| 10
 +
| 8
 +
| 13
 +
| 17
 +
| 4
 +
| 2
 +
|-
 +
| style="text-align:left;" | Irland
 +
| 0
 +
| 0
 +
| 0
 +
| 1
 +
| 0
 +
| 0
 +
| 0
 +
| 1
 +
| 0
 +
| 0
 +
|-
 +
| style="text-align:left;" | Hellas
 +
| 8
 +
| 6
 +
| 5
 +
| 10
 +
| 11
 +
| 1
 +
| 5
 +
| 7
 +
| 7
 +
| 2
 +
|-
 +
| style="text-align:left;" | Spania
 +
| 8
 +
| 8
 +
| 11
 +
| 10
 +
| 8
 +
| 10
 +
| 12
 +
| 10
 +
| 3
 +
| 6
 +
|-
 +
| style="text-align:left;" | Frankrike
 +
| 40
 +
| 38
 +
| 42
 +
| 51
 +
| 41
 +
| 48
 +
| 41
 +
| 26
 +
| 38
 +
| 22
 +
|-
 +
| style="text-align:left;" | Kroatia
 +
| 18
 +
| 18
 +
| 13
 +
| 6
 +
| 11
 +
| 5
 +
| 10
 +
| 12
 +
| 11
 +
| 8
 +
|-
 +
| style="text-align:left;" | Italia
 +
| 18
 +
| 13
 +
| 14
 +
| 16
 +
| 19
 +
| 15
 +
| 12
 +
| 3
 +
| 5
 +
| 8
 +
|-
 +
| style="text-align:left;" | Latvia
 +
| 8
 +
| 6
 +
| 2
 +
| 3
 +
| 5
 +
| 3
 +
| 7
 +
| 9
 +
| 7
 +
| 1
 +
|-
 +
| style="text-align:left;" | Litauen
 +
| 6
 +
| 4
 +
| 4
 +
| 5
 +
| 3
 +
| 6
 +
| 2
 +
| 3
 +
| 0
 +
| 1
 +
|-
 +
| style="text-align:left;" | Luxemburg
 +
| 0
 +
| 0
 +
| 2
 +
| 0
 +
| 0
 +
| 1
 +
| 0
 +
| 2
 +
| 0
 +
| 0
 +
|-
 +
| style="text-align:left;" | Ungarn
 +
| 38
 +
| 37
 +
| 35
 +
| 28
 +
| 33
 +
| 27
 +
| 33
 +
| 33
 +
| 37
 +
| 41
 +
|-
 +
| style="text-align:left;" | Nederland
 +
| 14
 +
| 19
 +
| 21
 +
| 13
 +
| 12
 +
| 7
 +
| 11
 +
| 13
 +
| 14
 +
| 10
 +
|-
 +
| style="text-align:left;" | Østerrike
 +
| 43
 +
| 36
 +
| 37
 +
| 27
 +
| 33
 +
| 31
 +
| 26
 +
| 19
 +
| 24
 +
| 19
 +
|-
 +
| style="text-align:left;" | Polen
 +
| 86
 +
| 77
 +
| 75
 +
| 65
 +
| 74
 +
| 76
 +
| 57
 +
| 64
 +
| 68
 +
| 54
 +
|-
 +
| style="text-align:left;" | Portugal
 +
| 7
 +
| 11
 +
| 12
 +
| 9
 +
| 6
 +
| 8
 +
| 7
 +
| 7
 +
| 16
 +
| 10
 +
|-
 +
| style="text-align:left;" | Romania
 +
| 43
 +
| 59
 +
| 44
 +
| 50
 +
| 29
 +
| 42
 +
| 43
 +
| 34
 +
| 37
 +
| 22
 +
|-
 +
| style="text-align:left;" | Slovenia
 +
| 6
 +
| 8
 +
| 11
 +
| 9
 +
| 10
 +
| 8
 +
| 6
 +
| 9
 +
| 7
 +
| 5
 +
|-
 +
| style="text-align:left;" | Slovakia
 +
| 21
 +
| 27
 +
| 18
 +
| 20
 +
| 22
 +
| 12
 +
| 14
 +
| 20
 +
| 16
 +
| 14
 +
|-
 +
| style="text-align:left;" | Finland
 +
| 5
 +
| 11
 +
| 4
 +
| 4
 +
| 10
 +
| 6
 +
| 7
 +
| 7
 +
| 6
 +
| 5
 +
|-
 +
| style="text-align:left;" | Sverige
 +
| 7
 +
| 11
 +
| 13
 +
| 13
 +
| 9
 +
| 7
 +
| 16
 +
| 10
 +
| 8
 +
| 6
 +
|-
 +
| style="text-align:left;" | Norge
 +
| 2
 +
| 2
 +
| 3
 +
| 2
 +
| 3
 +
| 0
 +
| 2
 +
| 3
 +
| 1
 +
| 2
 +
|-
 +
| style="text-align:left;" | Sveits
 +
| 4
 +
| 8
 +
| 3
 +
| 4
 +
| 4
 +
| 3
 +
| 1
 +
| 2
 +
| 1
 +
| 1
 +
|-
 +
| style="text-align:left;" | Storbritannia
 +
| 11
 +
| 10
 +
| 12
 +
| 11
 +
| 3
 +
| 10
 +
| 10
 +
| 5
 +
| 5
 +
| 4
 +
|}
 +
 +
=== Planovergangsulykker i Norge ===
 +
 +
Figuren nedenfor viser oversikt over antall ulykker og antall drepte fra slutten av 50-årene i Norge. Spesielt før denne tid og delvis i starten av denne perioden økte antall ulykker som en konsekvens av økende motorisert trafikk på veiene. Mot slutten av 50-årene ble det satt inn relativt store ressurser for å fjerne planoverganger eller sørge for utvidet sikring av planoverganger.
 +
 +
[[Fil:Plo-ulykker.png]]
 +
 +
I 1969 skjedde det imidlertid en kraftig økning av planovergangsulykker. 30 mennesker ble drept dette året. Samferdselsdepartementet satte da ned et utvalg til vurdering av sikkerhetsforholdene ved planoverganger. Utvalget leverte sin innstilling i mai 1970. Av de viktige tiltak som ble anbefalt var supplering med halvbommer på automatiske veisignalanlegg. Dette ble gjennomført i perioden 1972 til 1977 (se figur 6). Omkring 200 planoverganger for offentlig vei ble i denne perioden utrustet med lyd/lys-anlegg supplert med halvbommer. Dette fikk vesentlig betydning for den positive utviklingen av antall planovergangsulykker i årene som fulgte.
  
 
== Sikkerhetstiltak ==
 
== Sikkerhetstiltak ==
Linje 1 246: Linje 1 628:
 
* ORR Level Crossing: A guide for managers, designers and operators – Railway Safety Publication 7, December 2011  
 
* ORR Level Crossing: A guide for managers, designers and operators – Railway Safety Publication 7, December 2011  
 
* [https://trv.banenor.no/wiki/532_2013_Endringsartikkel_625 Endringsartikkel 625 i Teknisk regelverk]
 
* [https://trv.banenor.no/wiki/532_2013_Endringsartikkel_625 Endringsartikkel 625 i Teknisk regelverk]
* [https://trv.banenor.no/wiki/532 2020 Endringsartikkel 2701 Endringsartikkel 2701 i Teknisk regelverk]
+
* [https://trv.banenor.no/wiki/532_2020_Endringsartikkel_2701 Endringsartikkel 2701 i Teknisk regelverk]
 
* Risikovurdering: Forsterkede barrierer for planoverganger med veisikringsanlegg, rev. 15.5.2019, Bane NORs risikoanalysearkiv.
 
* Risikovurdering: Forsterkede barrierer for planoverganger med veisikringsanlegg, rev. 15.5.2019, Bane NORs risikoanalysearkiv.
 
* TØI rapport 1053C/2010 Den norske verdisettingsstudien Ulykker – Verdien av statistiske liv og beregning av ulykkenes samfunnskostnader
 
* TØI rapport 1053C/2010 Den norske verdisettingsstudien Ulykker – Verdien av statistiske liv og beregning av ulykkenes samfunnskostnader

Revisjonen fra 4. jan. 2023 kl. 09:50

Innhold

1 Planoverganger

En planovergang er et sted hvor en jernbane krysser en offentlig eller privat vei i plan.

1.1 Utvikling av antall planoverganger i Norge

Etter hvert som jernbanenettet ble bygget ut økte naturlig nok også antallet planoverganger, og rundt år 1950 hadde vi i Norge totalt 8 650 planoverganger. Av disse lå bare 370 i registrerte offentlige veier. Som det fremgår av figuren har det vært en kraftig reduksjon av antall planoverganger siden den gang.

Plo-antall-historisk.png

Figuren viser utviklingen i antall planoverganger (inkl. planoverganger som ikke er i drift) i perioden 1957 - 2016.


I 2022 er ca. 1900 planoverganger i bruk på jernbanenettet. Reduksjonen fra 1957 kommer primært av at en rekke baner er nedlagt siden den gang. I tillegg har en del planoverganger blitt nedlagt ev. erstattet av over- eller undergang.

De ca. 1900 planovergangene i 2022 som er i bruk fordeler seg slik etter kategori:

Planovegangskategori Antall
Offentlig vei 306
Privat vei m/alm. ferdsel 231
Privat vei u/alm. ferdsel 1109
Gangveier/skiløyper 214
Ikke kategorisert 34

1.2 Definisjoner

Planovergang: Krysning av vei og jernbanelinje i samme plan

Midlertidig planovergang: Planovergang som midlertidig er i drift.

Usikret planovergang: Planovergang uten teknisk sikring (veisikringsanlegg eller annet anlegg som automatisk varsler ankommende tog mot planovergangen)

Sperret planovergang: Planovergang som ikke er i drift (låst grind, planovergangslemmer er fjernet)

Offentlig vei: Vei som er offentlig eid, det vil si statlig, fylkeskommunal eller kommunal vei.

Alminnelig_ferdsel, ref. veitrafikkloven

Veisikringsanlegg (SJT): Bom og/eller lys- og lydsignaler med tilhørende tekniske innretninger. Grind er derimot ikke å regne som et veisikringsanlegg.

Veisikringsanlegg (ORV): Del av signalanlegget som viser signal 56A «Planovergangen kan passeres» mot tog og skift når planovergangen er sperret for veitrafikk, eller som på strekning med ERTMS tillater tog å kjøre forbi planovergangen når den er sperret for veitrafikk.

Planovergangsvakt: Den som ved feil på et veisikringsanlegg enten betjener anlegget manuelt eller sperrer planovergangen og viser signal til tog som skal passere.

Veifarende: Alle som benytter seg av veien som krysser planovergangen, f.eks. motorvogn, syklende og gående

Sikker passering: Først og fremst at de veifarende skal ha en reell mulighet til å undersøke om planovergangen er klar eller om det kommer et tog. Dette kan f.eks. sikres gjennom gode siktforhold, lyd- og lyssignaler osv.

1.3 Lover og forskrifter

1.3.1 Jernbaneloven

Planoverganger er omtalt i jernbanelovens §9. Her står det følgende:

(Plikter for allmennheten og eiere av private planoverganger) Alle som oppholder seg på jernbanens område plikter å følge de sikkerhetsanvisninger som gjelder for stedet.

Det er forbudt for publikum:

  • a) å stige på og av tog som er i bevegelse;
  • b) å oppholde seg på jernbanens område som ikke er beregnet for publikum;
  • c) å benytte planovergang når tog kan ventes.

Eier av privat grind eller annen lukkeinnretning er ansvarlig for at denne holdes lukket når kryssing ikke finner sted.

1.3.2 Forskrift om kjørende og gående trafikk (trafikkregler)

Krav til trafikanter som skal passere en planovergang er gitt i § 10, andre ledd.

2. Trafikant skal gi fri veg og om nødvendig stanse for sporvogn og for jernbanetog. Før passering av planovergang skal trafikant være oppmerksom på om jernbanetog eller sporvogn nærmer seg. Dette gjelder selv om overgangen er særskilt sikret. Kjørende skal holde så liten fart at stans om nødvendig kan skje i trygg avstand fra overgangen.

1.3.3 Jernbaneinfrastrukturforskriften

Videre er planoverganger omtalt i jernbaneinfrastrukturforskriftens § 3-6 med kommentarer:

Planoverganger skal være tilrettelagt for sikker passering for veifarende. [Kommentar: Med "veifarende" menes alle som benytter seg av veien som krysser planovergangen, f.eks. motorvogn, syklende og gående. Med "sikker passering" menes først og fremst at de veifarende skal ha en reell mulighet til å undersøke om planovergangen er klar eller om det kommer et tog. Dette kan f.eks. sikres gjennom gode siktforhold, lyd- og lyssignaler osv.]

Planoverganger på offentlige veier skal ha veisikringsanlegg. Infrastrukturforvalter skal i tillegg vurdere om det er behov for veisikringsanlegg på andre planoverganger ved endring av blant annet mengde og type trafikk på vei eller jernbane eller endringer i hastighet på strekningen. [Kommentar: Med "offentlig vei" menes vei som er offentlig eid, det vil si statlig, fylkeskommunal eller kommunal vei. Med "veisikringanlegg" menes bom og/eller lys- og lydsignaler med tilhørende tekniske innretninger. Grind er derimot ikke å regne som et veiskringsanlegg etter denne bestemmelsen.]

På planoverganger uten veisikringsanlegg eller bevoktning skal den tillatte hastigheten over planovergangen tilpasses siktforholdene slik at veifarende kan passere med tilstrekkelig tidsmargin. [Kommentar: De veifarende har plikt til å gi fri veg og om nødvendig stoppe for tog, jf. forskrift 21. mars 1986 nr. 737 om kjørende og gående trafikk (trafikkregler) § 10. Kravet i trafikkreglene § 10 fritar likevel ikke infrastrukturforvalter fra å legge til rette for at de veifarende kan overholde denne plikten. Tilstrekkelig tidsmargin innebærer at en veifarende som stopper ved planovergangen og ser seg godt for og deretter passerer planovergangen uten unødig tidsbruk, skal kunne gjøre dette uten risiko for å bli påkjørt av toget. Hvis dette ikke lar seg gjøre på usikrede planoverganger, må infrastrukturforvalter gjøre tiltak for å sikre planovergangen, f.eks. ved å bedre sikten for de veifarende eller senke tillatt hastighet for toget over planovergangen.]

På dobbeltsporede strekninger og der kjørehastigheten for tog er over 160 km/t skal det ikke være planoverganger.

Det skal ikke bygges nye planoverganger. Dette gjelder likevel ikke på driftsbanegårder, godsterminaler og havnespor som er stengt for alminnelig ferdsel, samt midlertidige planoverganger på anleggsområder.

2 Psykologiske modeller ved kryssing av planoverganger

2.1 Normative modeller

En normativ psykologisk modell har den ulempen at den forutsetter formen/strukturen på det fenomenet den skal beskrive. Dette medfører at en normativ modell bare kan predikere atferd så lenge det som blir modellert følger modellens norm. Men hvis normen ikke er en god tilnærming til fenomenet vil heller ikke en normativ modell kunne brukes til å si noe om eventuelle feil som følge av normbrudd. Så fort det foregår avvik fra den antatte handlingskjeden vil en normativ modell ikke lenger kunne brukes til å predikere handlinger og heller ikke til å si noe om årsaker til en eventuell ulykke. En ulykke vil i henhold til en normativ handlingsmodell bli forstått som en funksjon av en "feil" hvor en person ikke har oppført seg i henhold til modellens forventninger. En normativ modell slik som den praktiske atferdsmodellen vil da allerede ha beskrevet betingelsene for hvordan man skal forstå en eventuell ulykke. Sikkerhet vil bli ivaretatt i en slik modell ved å unngå at ’feil' oppstår. ’Feil’ er da handlinger som er antagonistiske med den spesifiserte modellen, uavhengig av hvilke betingelser som fikk handlingen til å forekomme. En normativ modell for menneskelig atferd kan i slike tilfeller hindre forståelse av bakgrunnen for en ulykke, da man nesten alltid kan spore årsaken tilbake til at sjåføren av bilen gjorde en feil (hadde ikke bilen stått på toglinja ville ikke ulykken skjedd, ergo har sjåføren gjort en feil, han burde ikke stått der).

2.2 Deskriptive modeller

På slutten av 1980- og tidlig 1990-tall så man en motreaksjon mot normative modeller, der man i stedet for å beskrive hva mennesker burde gjøre, gikk over til å beskrive hva mennesker faktisk gjør. Alle disse teoriene innebærer en omfattende beskrivelse av hva som skjer der og da, med de muligheter og begrensninger som viser seg bare i bestemte situasjoner. Ulempen med deskriptive modeller er at de vanskeliggjør generalisering, og dermed blir det også vanskelig å predikere og kontrollere situasjoner (som for eksempel atferd ved jernbaneoverganger). Imidlertid er kontekstuelle beskrivelser meget nyttige for å forstå et domene, og inngår som en naturlig del av enhver designprosess av menneske-teknologisystemer.

2.3 Formative modeller

En formativ modell vil i større grad ta høyde for atferdsvariasjon og er bedre egnet til å forstå grunnene til en ulykke da den ikke har en forventning om en spesifikk handlingssekvens eller beveggrunn for de handlingene som forekommer. Formative modeller innen proaktivt sikkerhetsarbeid samt ulykkesetterforskning brukes i økende grad. Bruken av slike modeller er relatert til en forståelse av at ulykker i komplekse sosiotekniske systemer er multikausale, dvs. at de er forårsaket av mange små endringer/hendelser i systemet som sammen leder til en kritisk hendelse. I dette perspektivet blir sikkerhet opprettholdt ved å sørge for at operatører har nødvendig handlingsrom til å kunne utføre de nødvendige akseptable handlingsstrategier. Fokus blir på å legge til rette for et system som tåler variasjoner i menneskelige handlingsstrategier, dvs. å ha et system som forventer at personer kan utføre handlinger som er suboptimale. Handlinger blir forstått ut fra de miljøfaktorer som er med på å forme individets handlingsrom. En formativ modell er dermed variasjonsorientert heller enn å være handlingsspesifiserende. Av denne grunn vil det være mer fornuftig å bytte ut den underliggende normative modellen som beskriver en ’optimal’ handlingssekvens med en formativ modell som beskriver yttergrensene for hva man kan forvente seg av variasjon i menneskelig atferd. Tilrettelegging av tiltak for sikker kryssing av planoverganger må anvende relevant psykologisk forskning for å kunne forstå menneskelig atferdsvariasjon ved kryssing av planoverganger. Deretter kan det utvikles en atferdsmodell som gir et formativt utgangspunkt for evaluering av sikkerhet ved planoverganger.

2.4 Psykologisk grunnlag for bruk og presentasjon av informasjon ved planoverganger

Ved kryssing av en jernbaneovergang står brukeren i en situasjon der han eller hun er avhengig av å tolke informasjon fra miljøet for å kunne utvise sikker og målrettet atferd. Men "informasjon" er ikke en enkelt ting – det er snarere et samlebegrep. Vi kan ganske enkelt ikke anta at informasjon er en nøytralt lagret enhet som rasjonelt og økonomisk benyttes for å passe til en gitt situasjon. Hvordan informasjon blir oppfattet og hvordan det blir forstått avhenger både av situasjonen og av personens fysiske og mentale tilstand. For å kunne si noe om menneskelig atferd ved planoverganger trenger vi å forstå hvordan informasjon (f.eks. skilt og signaler) kan bli tolket av trafikanter og hvordan dette påvirker deres atferd. En mye brukt inndeling innen menneske-maskinlitteraturen er en inndeling av informasjon i signaler, tegn og symboler.

2.4.1 Signaler, tegn og symboler

Avhengig av bakenforliggende psykologiske betingelser (mentale modeller), samt aspekter ved situasjonen, kan den samme informasjonen oppfattes både som et signal, som et tegn eller som et symbol (merk at det man omtaler som et signal i dagligtale (blinkende lys, varselsskilt etc.) ikke er signaler, men tegn). Signaler har en sterk perseptuell basis, fordi de er kontinuerlige kvantitative indikatorer på miljøets atferd i tid og rom. Et eksempel på et "signal", er oppfattelsen av hvordan avstand mellom toget og plattformen endrer seg over tid. Tegn, derimot er arbitrære (tilfeldige), men kjente representasjoner som bærer mening i et miljø. Åpenbare eksempler her er signalsystemet for jernbanen. At gul/grønn-kombinasjon på forsignal betyr "avvik", er kjent for alle togførere. Men relasjonen mellom tegnet og det tegnet betyr er arbitrært. Symboler er meningsfulle formelle strukturer som representerer egenskaper ved miljøet. Symboler er relatert til en språklig struktur, som enten kan avtegne seg i tekst, i tale, eller i tanker. Symboler relaterer seg til den deklarative hukommelsen (det vil si "det vi kan uttrykke med ord"). Vi ser i denne inndelingen at signaler og tegn refererer til perseptuelle kvaliteter ved miljøet, mens symboler har en semantisk (språklig meningsbærende) kvalitet.

Grunnen til at denne inndelingen er meget sentral for å forstå atferd ved planoverganger, er at de ulike typene av informasjon tenderer til å utløse ulike typer av kognitiv kontroll. Man skiller gjerne mellom 3 typer av kognitiv kontroll, nemlig ferdighetsbasert kontroll, regelbasert kontroll og kunnskapsbasert kontroll.

En jernbaneovergang er farlig for publikum kun i én type situasjon – nemlig i de tilfeller der det kommer et tog. Det er i disse situasjonene at det kognitive systemet heller klart i retning av lavere nivåer av kognitiv prosessering. Det vil være feilaktig å anta at slike situasjoner preges av symbolsk prosessering; altså tenkning i en språklig form (kunnskapsbasert kontroll). For det første vil en persons holdninger i minimal grad influere atferden. Videre kan man anta at skriftlig informasjon ikke vil influere en persons atferd. Imidlertid vil tegn (signalsystem, varslingssymboler, skilt etc.) kunne influere på atferd. Dette forutsetter 1) konsekvens, 2) konsistens og 3) frekvens. At tegn bør være konsekvent innebærer at det er en kulturell betinging (læring) av relasjonen mellom tegnet og det tegnet betyr. I og med at denne sammenhengen er arbitrær må det eksistere en sterk sosiokulturell praksis som styrker sammenhengen. Overført til planoverganger ser man at kryssende tog ofte markeres med gult blinkende lys. Det er ingen sosiokulturell praksis som støtter sammenhengen mellom tegnet "gult blinkende" og atferden "stopp". Tegnmessig er denne sammenhengen meget arkaisk. Videre må tegn være konsistente, det vil si at de må benyttes på tvers av ulike situasjoner (det vil si spatialt), og at de må være like fra gang til gang (det vil si temporært). Overført til planoverganger ser man at det eksisterer en relativt lav grad av standardisering av tegnutforming, spatialt sett. Man har også sett uheldige eksempler på temporær tegnsetting (bommer som står åpne når toget passerer). Med frekvens menes her det at sammenhengen mellom tegnet og det tegnet betyr, må repeteres relativt ofte for at assosiasjonen ikke skal forsvinne fra bevisstheten (kjent som ekstinksjon). Det som har klart mest betydning for atferdsregulering er imidlertid ikke tegn (og absolutt ikke symboler), men signaler. Signaler er som nevnt "kontinuerlige kvantitative indikatorer på miljøets atferd i tid og rom". Med dette menes at signaler er det som mennesker opplever som kontinuerlig ("analog") informasjon, der det eksisterer en en-til-en sammenheng i mellom det brukeren gjør, og det som persiperes i miljøet. Det er her en direkte sammenheng i tid og rom mellom årsak og effekt. Fordelen med denne typen informasjonsprosessering er at det ikke fordrer mentale operasjoner; man trenger ikke å tenke seg frem til en effekt, fordi effekten er direkte synlig. For de situasjonene der det ikke eksisterer slike sammenhenger (for eksempel i tekniske systemer), er det mulig å re-representere slike sammenhenger. Overført til planoverganger er utfordringen denne: Hvordan sørge for å konstruere signaler som gir intuitiv og umiddelbar mening for brukeren? Dette er først og fremst et designproblem.

Det eksisterer flere mulige grensesnitt mellom mennesket og faresituasjonen (kryssende spor) på en planovergang. Det mest umiddelbare er grensesnittet mellom personen/kjøretøyet og toget (hvordan skape en opplevelse av en-til-en sammenheng mellom toget som nærmer seg og personen eller kjøretøyet, på tross av at man ikke kan se toget fysisk). Imidlertid åpner man løsningsrommet hvis man også betrakter grensesnittet imellom personen/kjøretøyet og fysiske sperringer. Gjør man det umulig å fysisk krysse sporet når toget kommer, så blir det sentrale grensesnittet ikke mot toget i seg selv, men mot den fysiske sperren.

2.4.2 Anbefalinger ved informasjonsbruk ved planoverganger

  • Signaler: Ja, så mye som mulig
  • Tegn (f.eks. lyssignaler): Ja, men ta hensyn til konsekvens,konsistens og frekvens
  • Symboler (skilt): Nei – bør unngås

3 Planovergangstyper

3.1 Konstruksjonsprinsipper

En planovergang anlegges med dekke utført i følgende materialer:

Figur: Planovergang (Strail) med gummielementer
Figur: Planovergang (Bodan) med betongelementer
  • gummi
  • betong
  • asfalt
  • tre

De ulike konstruksjonene anvendes i Norge som følger:

  • Trelemmer benyttes i private planoverganger med liten trafikk
  • Asfaltdekke benyttes i sidespor og terminaler
  • Betongelementer og gummielementer benyttes i offentlige planoverganger med større og tyngre trafikk
  • Kombinasjoner av elementer av ulike materialtyper nevnt ovenfor kan benyttes i planoverganger med liten trafikk

4 Veisikringsanlegg

Veisikringsanlegg har til hensikt å sikre de veifarende og gående mot påkjørsler av jernbanens tog og materiell. Videre er det av stor betydning for jernbanens drift at tog kan framføres på en sikker måte uten at det kommer uvedkommende inn på sporet. Veisikringsanlegget skal fungere slik at rullende materiell kan passere en veiovergang uten at det skal kunne oppstå fare for skade på hverken det rullende materiell, infrastrukturen eller trafikken på veien.

Generelt finnes følgende utstyr ved alle veisikringsanlegg:

  • 2 stk. retningsavhengige innkoblingsfelter som kobler inn veibomanlegget når tog kommer mot planovergangen.
  • 1 stk. utløsingsfelt i planovergangen som løser ut veisikringsanlegget når tog har passert planovergangen. Ved stasjoner er det to utløsingsfelter i hvert spor.
  • Styringssystem som er montert i en kiosk (reléhus) med tilhørende betjeningsutstyr.
  • Utstyr ved planovergangen så som signaler mot vei, klokker, veibommer, signaler mot tog og eventuelle forsignaler for signaler mot tog.

Planoverganger for offentlig vei sikres med veisikringsanlegg. Veisikringsanlegg utføres enten som helbomanlegg, halvbomanlegg eller veisignalanlegg.

Veisikringsanlegg på linjen skal virke automatisk for alle tog. Veisikringsanleggene kobles inn av korte retningsavhengige sporfelter (innkoblingsfelter) anbrakt i en avstand fra planovergangen beregnet i henhold til minste varslingstid for veisikringsanlegget. Utløsingen skjer ved korte sporfelter i planovergangen.

Veisikringsanlegg på stasjonsområder skal virke automatisk når togvei sikres over planovergangen. Veien sperres i forbindelse med togets passering av innkoblingsfeltet når togvei i avhengighet til planovergangen sikres. Denne sperringen skal ikke kunne utløses før det tog som togveien er sikret for har passert planovergangen. Utløsingen skal bindes slik at den kun kan skje i det sporet det er sikret togvei til/fra. Ved strømbrudd på betjent stasjon eller når togvei ikke kan sikres, skal veisikringsanleggene betjenes med stiller og trykknapp. På ubetjent stasjon skal veisikringsanleggene virke automatisk ved strømbrudd.

4.1 Typer veisikringsanlegg

Det finnes 3 typer veisikringsanlegg:

  • veisignalanlegg (La)
  • halvbomanlegg (1/2 Ba)
  • helbomanlegg (Ba)

4.1.1 Veisignalanlegg (La)

Det er ingen krav til veibredde på denne type anlegg. Skilting utføres etter veitrafikkloven, skilt med underskilt, og fareskilt (Andreaskors). Se også veitrafikklovens skiltparagrafer. Ved elektrifiserte baner settes også høydegrenseskilt opp.

4.1.2 Halvbomanlegg (1/2 Ba)

Veibredden skal være min 5,5 meter i en avstand av 25 meter til hver side av planovergangen. Grunnen til dette er at møtende trafikk skal kunne avvikles på en forsvarlig måte, slik at farlige situasjoner som kan oppstå på planovergangen kan unngås. Skilting utføres etter veitrafikkloven, skilt med underskilt, og fareskilt (Andreaskors). Se veitrafikklovens skiltparagrafer. Ved elektrifiserte baner settes også høydegrenseskilt opp.

Bakgrunn for at det ble innført halvbomanlegg var de mange dødsulykkene som hvert år fant sted på planoverganger som kun var sikret med lysanlegg og klokker. Det ble da bestemt at hvitt lys i signalene mot tog kunne gis når bommene var satt i bevegelse i fra hevet stilling. Dette for å unngå utflytting av de eksisterende innkoplingsfeltene.

4.1.3 Helbomanlegg (Ba)

Det er ingen krav til veibredde ved helbomanlegg. Forøvrig skal skilting utføres etter veitrafikkloven på samme måte som for halvbomanlegg.

4.2 Funksjon

4.2.1 Veisignaler og klokker

Veisignaler kan vise hvitt blinklys, 45 blink per minutt, eller rødt blinklys, 90 blink per minutt. Veisignalene skal bare kunne vise hvitt lys når bommene er hevet og i kontroll. Klokkene skal begynne å ringe samtidig som veisignalene viser rødt lys. Varslingstiden, tiden fra klokkene begynner å ringe til tog kommer på planovergangen, skal være minst 30 sekunder. Ved veibomanlegg skal klokkene slutte å ringe når bommene er senket. Klokkene ringer ikke under heving av bommene.

4.2.2 Bomlykter

Bomlyktene skal vise rødt blinklys når veisignalene viser rødt blinklys, 90 blink pr. minutt.

4.2.3 Veibommer

Bommene skal ikke settes i bevegelse nedover før veisignalene har vist rødt lys i en på forhånd fastsatt tid (forringingstid). Denne tiden fastsettes særskilt for hvert anlegg og beregnes etter avstanden mellom sperrepunktene og en ganghastighet på 1,5 m/s. Bommene kan kun stoppes i mellomstilling fra betjeningsskapet i apparatkiosken når senking er iverksatt manuelt. Ved anlegg med fire bommer skal bommene som står til høyre for veien sett mot planovergangen, bevege seg nedover en tid før de andre bommene starter. Bommer som er satt i bevegelse oppover skal ikke kunne senkes igjen før etter normal forringingstid. Alle bommene skal gå opp samtidig.

4.2.4 Planovergangsignaler – signaler mot tog

Planovergangsignaler kan vise rødt blinkende lys, 45 blink per minutt, eller hvitt blinkende lys, 90 blink per minutt.

Planovergangsignaler ved helbomanlegg viser rødt blinkende lys når signalene mot vei viser hvitt blinkende lys, og hvitt blinkende lys når bommene er senket til nedre stilling og er i kontroll.

Planovergangsignaler ved halvbomanlegg viser hvitt blinkende lys når bommene har satt seg i bevegelse nedover og gått 2° ut av normalstilling.

4.2.5 Forsignaler for planovergangsignaler

Ved planoverganger på linjen er det satt opp forsignal til planovergangsignalet ved planovergangsmerket. Forsignalet viser fiolett blinkende lys, 45 blink per minutt når planovergangsignalet viser rødt blinkende lys, og hvitt blinkende lys, 90 blink per minutt når planovergangsignalet viser hvitt blinkende lys.

4.3 Teknisk avhengighet mellom veisikringsanlegg og stasjonens sikringsanlegg

Hvis det mellom innkoblingsfeltet og planovergangen finnes hovedsignaler for sikringsanlegg/linjeblokk som gjelder for kjøreretningen mot planovergangen, skal veien sperres ved at togveien sikres. Hovedsignaler for sikringsanlegg er normalt satt i slik teknisk avhengighet til planovergangen at signalene til stasjonens sikringsanlegg ikke kan vise kjørsignal før veien er sperret for veitrafikk. Ved helbomanlegg viser hovedsignalene kjørsignal først når bommene er senket til nedre stilling. Ved halvbomanlegg kan hovedsignalene vise kjørsignal når bommene er ute av "hev"-stilling på vei ned, dersom det er satt gjennomkjøring. Når dette ikke er tilfelle skal kjørsignal først vises når bommene er senket til nedre stilling.

Hvis sikringsanleggets hovedsignaler har forsignaler, skal innkoblingsfeltet plasseres så langt fra planovergangen at også forsignalet kan settes i avhengighet til planovergangsignalet. Dersom dette fører til at varslingstiden ved halvbomanlegg blir mer enn 90 sekunder for langsomste rutemessige tog, skal avhengigheten sløyfes. Hvis dette er tilfelle, skal det settes opp et forsignal for planovergangsignalet. Når planovergangen ligger slik til at togvei slutt er ved planovergangen, bør det settes opp forsignal til planovergangsignalet.

Hvis planovergangen ligger mellom forsignalet og hovedsignalet, skal forsignalet normalt settes i avhengighet til veien. I de tilfeller der en planovergang ligger i umiddelbar nærhet av hovedsignalet, skal hovedsignalet settes i avhengighet til veien.

Hvis planovergangen ligger på en stasjon og innkjørtogvei normalt avsluttes foran planovergangen, skal bare utkjørhovedsignal settes i avhengighet til planovergangen.

Signal som står i avhengighet til en planovergang skal kunne vise kjørsignal senest når toget er 300 meter eller 8 sekunders kjøretid foran signalet.

Dvergsignaler og skiftesignaler som tillater skiftebevegelser over en planovergang, skal som regel ikke vise "skifting tillatt" eller "varsom skifting tillatt" uten at veien er sperret. Forøvrig er det normalt ingen avhengigheter mellom dvergsignalene og planovergangen.

De tekniske avhengigheter til sikringsanlegget er de samme som for stasjoner på ikke fjernstyrte strekninger. På stasjon omkoblet til automatikk skal anleggene virke automatisk også ved strømbrudd. Togleder skal ved egen ordre kunne sperre veien. Ordren skal da virke på samme måte som om stiller "Senk" og trykknapp i stillerapparatet betjenes.

Veisikringsanlegget skal normalt kunne utløses ved at tog passerer planovergangen. Veibomanlegg på fjernstyrt stasjon skal ikke utløses ved et togs passering av planovergangen når ny togvei i motsatt retning er magasinert for et tog som står på stasjonen. Anlegget skal da virke som om stiller "Senk" er omlagt. Planovergangen skal kunne utløses med egen ordre (tidsutløsing). Dette under forutsetning av at alle stasjonens sporfelter er frie, at ingen togveier er sikret, og at det ikke er frigitt for lokalomstilling.

Dersom det er stilt togvei, skal denne først løses ut med egen ordre (tidsutløsing). Når den er utløst kan ny egen ordre sendes for utløsing av planovergangen (tidsutløsing). Ved stasjonsstyrt stasjon kan planovergangen tidsutløses på tilsvarende måte ved å legge hovedtogveistillerne i vedkommende ende av stasjonen mot/fra hverandre, eventuelt ved egen ordre. Tidsrelé for utløsing av planovergangsanlegget vil da starte.

For planoverganger på linjen hvor innkoblingen skjer i avhengighet til sikret utkjørtogvei, kan tidsutløsing skje fra stasjon på samme måte som nevnt ovenfor. De tekniske avhengigheter er da at sporfeltene mellom stasjonen, utkjørsignaler og planovergangen er frie. Dessuten må linjeblokken være i nøytralstilling.

4.4 Veisikringsanleggets betjeningsutstyr

4.4.1 Betjening fra kiosk

På kioskens yttervegg skal det settes opp et betjeningsskap som inneholder sikringer, tre trykknapper merket "Hev", "Senk" og "Stopp", samt to plomberte trykknapper merket "Nødutløsing". Når "Senk"-trykknappen betjenes, sperres veien og bommene senkes. Bommene heves da automatisk når tog har passert overgangen. Bommene heves ved å betjene "Hev"-trykknappen. Bommene skal ikke kunne heves dersom toget har passert innkoblingsfeltet og er på vei mot planovergangen. Hvis “Stopp”-trykknappen betjenes når senking er iverksatt med “Senk”-trykknappen, stanses bommenes bevegelse under senkingen. Bommene kan ikke stanses når de er under heving. "Stopp"-trykknappen kan sperres i inntrykket stilling og blokkerer da utløsingen av anlegget.

To trykknapper merket "Nødutløsing" bringer veibomanlegget tilbake til normalstilling hvis varsling er iverksatt av tog og utløsing ikke har funnet sted. Trykknappene må betjenes samtidig. Trykknappene skal utstyres med plomberingshette og være plombert.

4.4.2 Stiller og trykknapp i sikringsanleggets stillerapparat

Når veisikringsanlegget ligger på stasjonsområdet, settes det opp en stiller og en trykknapp i stasjonens stillerapparat. Legges stilleren ned, skal den virke på samme måte som "Senk"-trykknappen ved overgangen. Stilleren skal bli liggende omlagt inntil den føres tilbake til normalstilling. Veien forblir sperret så lenge stilleren er omlagt. Når stilleren legges tilbake i normalstilling skal anlegget løse ut først etter at tog har passert planovergangen.

Legges stilleren opp samtidig som trykknappen betjenes, skal anlegget virke på samme måte som når "Hev"-trykknappen ved overgangen betjenes. Stilleren skal fjære tilbake til normalstilling når den slippes. Anleggene lages normalt uten denne betjeningsmuligheten, men ligger planovergangen slik at trafikken over overgangen kan observeres fra stillerapparatet, skal det være mulig å heve bommene med stilleren.

Legges stilleren ned samtidig som trykknappen betjenes, sperres veien og anlegget kan bare bringes tilbake til normalstilling ved at tog passerer overgangen. Dersom betjeningsapparatet ikke er et ordinært stillerapparat, skal ordre uansett bare kunne utføres ved bevisst handling.

4.4.3 Indikering

Når planovergangen ligger på eller så nær en stasjon at sperring av veien er avhengig av stasjonens sikringsanlegg, settes det opp to indikeringslamper i sikringsanleggets stillerapparat. Veisikringsanleggene indikeres med hvit lampe ved normalstilling, og rød lampe når veien er sperret. Ved veibomanlegg skal bommene være senket og i kontroll, før rød lampe tennes. Bommene skal være i kontroll “hev stilling” før hvit indikeringslampe tennes. Under omstilling er begge lampene slukket. Hvis bommene er ute av kontroll er også begge lampene slukket.

Det anordnes også feilindikering med rød lampe og summer, som varsler hvis veien har vært sperret for veitrafikk i mer enn fem minutter. Summeren kobles ut med en egen trykknapp. Alle automatiske veisikringsanlegg skal, om mulig, indikeres til nærmeste stasjon og hos togleder.

4.5 Plassering av utstyr

4.5.1 Plassering av innkoblingsfelter

Innkoblingsfeltene plasseres slik at forringingstiden pluss senketiden for bommene tilsvarer kjøretiden for hurtigste tog fra innkoblingsfeltet til en viss avstand foran planovergangen.

4.5.2 Veisignaler og klokker

Veisignal med Andreaskors og klokker plasseres alltid til høyre for veien sett mot linjen. Etter behov settes det opp veisignal også på venstre side av veien, og dette alltid når veibredden er større enn 6 meter. Etter behov settes Andreaskors også opp på venstre side av veien.

Hvis flere veier grener ut fra planovergangen settes det om nødvendig opp flere signalhoder slik at signalet kan sees fra alle veiene. Veisignalene til høyre for veien benevnes V1 og V2 og på venstre side V3 og V4. Signalene V1 og V3 (V2 og V4) plasseres på samme side av linjen med V1 nærmest Oslo.

4.5.3 Bomlykter

Det skal settes opp minst en bomlykt på hver veibom for høyre kjørebane. Lykten plasseres slik at kjørebanen dekkes best mulig. Ved anlegg med fire bommer kan det settes opp fire bomlykter. Dette er særlig aktuelt hvis det ikke settes opp veisignal på venstre side av veien.

4.5.4 Veibommer

Ved veibomanlegg settes bommene, der det er mulig, opp på høyre side av veien. Lommer mellom bommene og jernbanelinjen skal forsøkes unngått. Ved halvbomanlegg settes bommene alltid opp på høyre side av veien, vinkelrett på veibanen.

4.5.5 Planovergangsignaler

Det skal settes opp planovergangsignaler ved overgangen. Planovergangsignaler skal være ensidige. På stasjoner settes om nødvendig opp flere planovergangsignaler slik at alle togspor dekkes.

Planovergangsignaler benevnes W1 - W3 for tog i retning fra Oslo og W2 - W4 for tog i retning mot Oslo.

4.5.6 Forsignaler for planovergangsignaler

For planoverganger på linjen skal det alltid settes opp forsignal for planovergangsignal ved planovergangsmerket. Ved planovergang på stasjoner skal det alltid settes opp forsignal for planovergangsignal når hovedsignaler ikke er i avhengighet til veisikringsanlegget.

Forsignal for planovergangsignal benevnes WA for tog i retning fra Oslo og WB for tog i retning mot Oslo.

4.5.7 Planovergangsmerke

For planoverganger med automatisk veibom- eller veisignalanlegg, skal det settes opp planovergangsmerke. Dette settes opp på en ca. 2 meter høy stolpe, som regel på høyre side av sporet, eller på stolpen til orienteringssignalet for planovergangen. Planovergangsmerket settes opp ca. 500 meter foran planovergangsignalet.

5 Forenklede veisikringsanlegg

5.1 Varsellampe

Hvis det for øvrig har ligget til rette, har det på fjernstyrte strekninger blitt anordnet varsellampe etter anmodning fra grunneier eller bruksberettigede. Varsellampe har blitt anordnet der annen utvidet sikring ikke kan komme på tale av økonomiske eller andre grunner. Dette er en sikringsmåte som har flere svakheter og benyttes kun i spesielle tilfeller.

Varsellampen er plassert på en ca. 2 m høy stolpe og slik at den lyser langs veien, og slik at den blir minst mulig synlig fra linjen. Varsellampen bør styres av de nærmeste blokksporfelter. Når blokksporfeltene er fri, viser varsellampen hvitt fast lys (normalstilling). Når et av blokksporfeltene belegges, slokker varsellampen. Varsellampen skal slokke når toget er minimum 1 min. kjøretid fra planovergangen regnet for hurtigste tog. Varsellampen registrerer ikke togets kjøreretning og forblir slukket en tid etter at toget har passert planovergangen.

Skilt for fjøslykt1.JPG Plo randsfj.banen4.jpg

5.2 Enkelt veisignalanlegg

5.3 Varsellys

6 Planoverganger uten teknisk sikring

Planoverganger uten teknisk sikring (ofte benevnt usikrede planoverganger) er kun tillatt benyttet der private veier og andre ferdselsårer krysser jernbanen i samme plan.

Da jernbanen ble bygget ble det anlagt en rekke planoverganger der jernbanen krysset private eiendommer. Disse kategoriseres etter bruk som:

  • Landbruksoverganger
  • Skogbruksoverganger
  • Gårdsveier
  • Turveier, skiløyper

I oktober 1969 ble det satt ned et regjeringsoppnevnt utvalg som fikk mandat til å vurdere sikkerhetsforholdene ved nasjonale planoverganger. Mandatet til utvalget var å redegjøre for det arbeidet som hadde vært gjort og som fremdeles ble gjort med sikring av planoverganger, vurdere de tekniske og økonomiske sider av saken og om mulig fremme forslag til en plan for arbeidet de nærmeste år. Utvalget la frem sin innstilling i mai 1970.

6.1 Normativ modell for kryssing av jernbanen på en planovergang

Utvalget beskrev i sin rapport en normativ modell for beregning av tilstrekkelige siktlengder for sikker passering av en planovergang. I 1970 var stort sett samtlige private planoverganger utstyrt med grind. Dette bildet har senere endret seg mye i takt med endringer i samfunnet knyttet til gårdsdrift og arealbruk langs jernbanen. Modellen for beregning av siktlengder dannet likevel underlaget for private planoverganger der grindene etter hvert ble fjernet eller ble tatt ut av bruk.

Definisjon av siktlengde (S) og den kjørelengde (L) som kjøretøyet trenger for å komme over planovergangen i løpet nødvendig kjøretid (t)

Figur: Definisjon av siktlengde (S) og den kjørelengde (L) som kjøretøyet trenger for å komme over planovergangen i løpet nødvendig kjøretid (t)

Siktlengdekravet ble definert som den siktlengden langs linjen som er tilstrekkelig til at bilen kan rekke over før et tog som befant seg utenfor siktavstand kan nå frem til overgangen. Siktlengdekravet ble basert på togets kjørehastighet over planovergangen, den lengden L kjøretøyet må kjøre for å være i sikkerhet på den andre siden av planovergangen og en tung bils akselerasjonsevne. Hva som menes med L er vist på figuren. På samme figur er det vist hvordan nødvendig siktlengde måles ut i marken.

6.1.1 Siktmodellen fra 2001

I 2001 ble en siktmodell for planoverganger tatt inn i Teknisk regelverk [JD530, kap. 12, Planoverganger, avsn. 2.5] som ga krav til sikt til tog fra usikrede planoverganger. Disse kravene ble etablert på bakgrunn av ”Utvalg til vurdering av sikkerhetsforholdene ved planoverganger” [mai 1970]. De ulike kravene til siktlengde fremkom ved at man har ulike krav til tid for å bringe et kjøretøy av gitt type fra sikkert sted før planovergangen til sikkert sted etter planovergangen. De ulike kjøretøytyper, tider og avstander/lengder fremkommer av tabellen under.

Kjøretøy Typekjøretøy L (JD530) l1 (017) l2 t (JD530)
Fotgjenger 12 m1) 0,4 m 6 m 5,0 s
Større personbil P 12 m 4,8 m 5,5 m 5,0 s
Landbruks- eller skogbrukskjøretøy ST 21 m 15,5 m 5,5 m 7,0 s
Lastebil/trailer/tømmerbil VT 28 m 22,0 m 5,5 m 8,2 s

1) Verdien L for fotgjenger er satt lik 12 m fordi det er verdier for L som er angitt i figur 12.5 i JD 530. Det korrekte rent logisk hadde vært å angitt t = 5 s og deretter anvendt verdier for t i figuren istedenfor L.

Forklaringer til tabellen:

  • 017 er håndbok nr. 017 i Vegvesenets håndbokserie
  • l1 er kjøretøytypens/fotgjengerens dimensjonerende lengde
  • l2 er avstanden fra førerens/fotgjengerens observasjonspunkt til ”trygt sted” på andre siden av planovergangen
  • L ≥ l1 + l2

6.1.2 Siktmodellen fra 2004

Etter presentasjonen av siktmodellen i 2001 ble det satt ned en arbeidsgruppe for sikkerhetstiltak for usikrede planoverganger som en del av arbeidet med nasjonal transportplan (NTP). Arbeidsgruppens forslag til oppdatert siktmodell ble sendt ut på høring høsten 2001 og resultatet av høringen ble tatt inn i Teknisk regelverk 1.1.2004. Arbeidsgruppens forslag var basert på:

  • Reelle simuleringer med kjøretøyer med bl.a. kjøring av vogntog/tømmervogntog med lengde 22 m over planovergang (utført av Statens trafikklærerskole (STLS)), og av traktor m/u henger (foretatt av personer med egne planovergangsrettigheter).
  • Erfaringer fra andre land, bl.a. fra Finland og Sverige hvor sammenligning av regelverk ble foretatt.
  • Gjennomgang av krav til sikt, øvrige generelle nye krav slik som skilting og visitasjon og forslag til supplerende tiltak der disse nye kravene kombinert med siktkrav ikke er tilfredstillende. Det ble også beskrevet krav vedrørende orienteringssignal og anbefalinger mht. veigeometri.

Endringen resulterte i et nytt kapittel i Overbygning/Vedlikehold (JD532) kapittel 10. Reglene inneholdt:

  • Nye krav til sikkerhetstiltak ved planoverganger (gjelder siktkrav, skilting, signalering og øvrige tiltak).
  • Konsekvens for bruker
  • Nye vedlegg med tiltaksoversikt, skiltveileder, anbefalt veigeometri mv.
  • Økt krav til skilting og noe forlengede siktkrav ved lengre/tyngre kjøretøyer

6.1.2.1 Praktisk adferdsmodell

Kjøretøy som skal krysse en planovergang vil redusere hastigheten før planovergangen og føreren vil forsøke å få oversikt over om det kommer tog ved vekselvis å se til høyre og venstre. Hvis føreren ikke observerer tog vil føreren beslutte å passere overgangen. Fra beslutningsøyeblikket vil føreren forsøke å akselerere kjøretøyet til det er kommet over planovergangen og over på ”trygt sted”.

6.1.2.2 Teoretisk beregningsmodell

I den teoretiske beregningsmodellen stopper føreren kjøretøyet med fronten 3 m fra spormidt. Føreren benytter 1 s på å forsikre seg om at det er klart og starte akselerasjonen. Deretter akselererer kjøretøyet over planovergangen til ”trygt sted”. ”Trygt sted” er bakende 2,5 m fra spormidt for kjøretøy og 3 m fra spormidt for fotgjengere. For tungt lastede landbruks- eller skogbrukskjøretøy settes akselerasjonen lik null. Det regnes i stedet med en konstant hastighet over hele planovergangen. Akselerasjonsegenskapene for de ulike kjøretøysgruppene ligger til grunn for beregningene. Pga. ulike risikoklasser for de ulike kjøretøysgruppene vil den andel av akselerasjonsegenskapene som benyttes i beregningsmodellen variere.

Kjøretøy Type kjøretøy tr at ev. vt ab ev. vb ab/at
Fotgjenger1) 0 s 1,5 m/s 1,3 m/s 0,87
Større personbil P 1 s 4,0 m/s2 1,5 m/s2 0,38
Landbruks- eller skogbrukskjøretøy 1) ST 1 s 2,8 m/s 1,7 m/s 0,61
Lastebil/trailer/tømmerbil VT 1 s 1,8 m/s2 1,2 m/s2 0,67
Tungt lastet (tømmer)vogntog1) VT 1 s 0,75 m/s

1) For fotgjengere, landbruks- eller skogbrukskjøretøy og tungl lastet (tømmer)vogntog betrakter man at planovergangen passeres med konstant hastighet

  • tr = reaksjonstid
  • at = teoretisk akselerasjon
  • ab = benyttet akselerasjon
  • vt = teoretisk hastighet
  • vb = benyttet hastighet

Som vi ser av forholdet ab/at utgjør de anvendte hastigheter, akselerasjoner, lengder og adferdsmønstre representer i ulik grad konservative verdier (sikkerhetsfaktor). De mest konservative betraktninger er knyttet til passering av planovergang med personbil. Disse betraktninger skal ivareta følgende forhold:

  • dårlig veidekke
  • vinterforhold
  • stigningsforhold
  • krysningsvinkel

Ekstremt dårlige kjøre- eller siktforhold er ikke hensyntatt i modellen. Dette kan for eksempel være islagt kjørebane eller tett tåke.

6.1.2.3 Reelle tester og sammenligninger med tidsforbruk av ulike kjøretøytyper

For å verifisere ulike kjøretøytyper ble Statens trafikklærerskole (STLS) engasjert til å foreta reelle simuleringer med tyngre kjøretøyer, bl.a. med kjøring av vogntog/tømmervogntog med lengde 22 m over planovergang. Det ble også foretatt simuleringer med traktor m/u henger.

I praksis ble planoverganger uten trafikk av kjøretøy dimensjonert etter L = 12 m (t = 5 s), jf. JD 530, figur 12.5. De aller fleste planovergangene med trafikk av kjøretøy ble dimensjonert etter L = 21 m (t = 7 s). Dette ga følgende resultater:

For planoverganger uten trafikk av kjøretøy (skiløyper, turveier, fotgjengeroverganger, sykkelveier):

  • Krav: l1 = 0,4 m, l2 = 6 m, t = 5 s
  • Parametre: tr = 0 s, v = 1,3 m/s
  • Kontroll: l = v ∙ t = 1,3 m/s ∙ 5 s = 6,5 m > l1 + l2

For planoverganger med trafikk av kjøretøy dimensjonert etter L = 21 m (t = 7,0 s):

Kjøretøy l1 + l2 t1 - tr ab ev. vb l = vt ev. ½at2
Fotgjenger 6,4 m 7,0 s 1,3 m/s 9,1 m
Større personbil 10,3 m 6,0 s 1,5 m/s2 27,0 m
Landbruks- eller skogbrukskjøretøy 21,0 m 6,0 s 1,7 m/s2 10,2 m
Lastebil/trailer/tømmerbil 27,5 m 6,0 s 1,2 m/s2 21,6 m
Tungt lastet (tømmer)vogntog1) 27,5 m 7,2 s 0,75 m/s 5,4 m

1) Verdier gjelder vogntog med maksimal last og lengde

Beregning og testene i tabellen viser at fotgjengere og personbiler har tilstrekkelig tid for passering mens følgende kjøretøy har ikke tilstrekkelig tid til å passere planovergangen med dagens siktkrav i JD 530 med nevnte forutsetninger:

  • traktor med tungt lastet tilhenger/annet tungt utstyr
  • lastebil/trailer/tømmerbil på overgang dimensjonert for L = 21 m (t = 8,2 s)
  • tungt lastet vogntog/tømmervogntog

6.1.2.4 Nye krav som ble innført i Teknisk regelverk 1.1.2004

Trær, busker, greiner, høyt gress mm. fjernes slik at bilførere som har stanset foran overgangen kan se så langt langs jernbanesporet at en kryssing kan foretas uten fare, se figur 1 og 2. Innen jernbanens eget område kan vegetasjonen fjernes uten videre.

Siktlengden er definert i figur nedenfor. Dette siktlengdekravet er basert på:

  • togets hastighet over planovergangen
  • den lengde kjøretøyet må kjøre for å være i sikkerhet på den andre siden av planovergangen
  • akselerasjonsevnen til et tungt kjøretøy

Siktlengden fra usikret planovergang til tog skal aldri være mindre enn 50 m.

Nødvendig siktlengde fra usikret planovergang til tog er gitt i figur 2. Valg av dimensjonerende kjøretid, t, gjøres ut fra hva slags kjøretøy som benytter planovergangen. Dersom planovergangen bare benyttes av fotgjengere, skal t = 5 s benyttes.

Dimensjonerende kjøretid, t , for forskjellige kjøretøy er:

  • personbil/større personbil/mindre lastebil t = 5 s
  • mindre/lettere landbruks- eller skogbrukskjøretøy t = 12 s
  • øvrige kjøretøyer (eks. tyngre lastebil/trailer/tømmervogntog, traktor med tungt lastet tilhenger etc. t = 35 s 1)

1) I praksis kan det vise seg at dimensjonering for disse kjøretøyene, siktlengde for t = 35 s, i mange tilfeller ikke kan tilfredstilles. Det skal i disse tilfellene i tillegg til størst mulig oppnåelig siktlengde, iverksettes andre tiltak for å bedre sikkerheten (øvrige tiltak vurderes i tråd med listen nedenfor).

Sikt over plo.png

De anvendte hastigheter, akselerasjoner, lengder og adferdsmønstre representer i ulik grad konservative verdier. De mest konservative betraktninger er knyttet til passering av planovergang med personbil. Disse betraktninger skal ivareta følgende forhold:

  • dårlig veidekke
  • vinterforhold
  • stigningsforhold
  • krysningsvinkel

Ekstremt dårlige kjøreforhold er ikke hensyntatt i modellen. Dette kan for eksempel være islagt kjørebane eller tåke.

6.1.2.4.1 Usikrede planoverganger hvor siktkrav ikke ivaretatt

I de tilfeller der siktkrav ikke kan tilfredstilles (for eksempel som følge av at sikthindre vil være kostbare, ev. vanskelig å fjerne) skal det i tillegg til størst mulig siktlengde, også iverksettes andre tiltak (vurderes ut fra utdrag av egen tiltaksliste).

Også i de tilfeller hvor veigeometrien (ved for eksempel stigningsforhold og krysningsvinkel) forventes å gi økt kjøretid og ev. vanskeliggjøre siktforhold skal siktkravene kombineres med andre tiltak (egen tiltaksliste).

6.1.2.4.2 Måling av sikt

Sikt skal måles i avstand 6,0 m fra spormidt ( ~ 5,25 fra nærmeste skinne) i det aktuell kjørefelt til spormidt i de aktuelle siktretning . Det skal videre måles i høyde 1, 10 m over vei! Det skal måles sikt i alle 4 siktsoner.

Merknad:

Hvis sikthinder (bygning, fjellskjæring eller lignende tilsier at man stopper nærmere sporet for å oppnå sikt, skal det måles sikt herfra. Men sikt skal aldri måles nærmere enn 4,0 fra spormidt.

6.1.2.4.3 Nytt STOPP-skilt

I tillegg til gitte siktkrav over vil det stilles krav til at nytt STOPP-skilt anvendes på alle usikrede planoverganger som er i daglig bruk. Dette ble tatt inn som krav i JD 515 (skiltregelverket i TRV).

6.1.2.4.4 Andre krav til skilt ved usikrede planoverganger

I tillegg til sikt- og skiltkrav over stilles det også krav til at følgende skilt og orienteringssignaler benyttes ved usikrede planoverganger:

  • Signal 67 enten B eller D (evt. også E) ”Orienteringssignal”
  • Skilt ”Lukk grinden” skal benyttes ved planoverganger utstyrt med grind
  • Skilt ”Høyspenning Livsfare” skal benyttes ved planoverganger på elektrifiserte strekninger
6.1.2.4.5 Skilting for øvrig

I møte mellom Jernbaneverket og Vegdirektoratet for diskusjon vedr. skilting for private veier refereres det:

Jernbaneverket ønsket videre å forsterke skilting på planoverganger for private veier. Standard skilting i dag er kun et lite skilt med ”lukk grinda”.

I tråd med tidligere anbefalinger, ble det tatt opp med vegmyndighetene (Vegdirektoratet), at følgende skilting er aktuell:

Planovergang med almen ferdsel (dvs flere boeneheter eller industri e.l.):

  • skilting som for offentlig ved med fareskilt, avstandmerker og andreaskors og eget underskilt ”stopp, se og lytt”, (eventuell ”full stopp” som brukes i mange andre land).

Planoverganger med daglig ferdsel, men svært begrenset antall brukere (en boenhet?):

  • skiltes med andreas-kors.

Andre typer planoverganger med lite eller kun periodisk bruk:

  • eget skilt ”stopp, se og lytt etter tog”.

Spørsmål for diskusjon i møtet:

  • Skilting med offentlig trafikk-skilt krever vedtak av vegsjefen. Hva kreves av saksbehandling, søknad for dette? Kan det søkes felles for en rekke tilfeller evt. gjøres et vedtak i Vegdirektoratet?
  • Oppsetting av andre typer skilt på privat veg; krever dette henvendelse til Vegdirekoratet evt. andre myndigheter?
6.1.2.4.6 Visitasjon av usikrede planoverganger

Det vil i forbindelse med nye siktkrav også utarbeides regler for visitasjonsrutiner for usikrede planoverganger. Elementer i visitasjonsrutinene bør være:

  • Hyppighet / frekvens, samt tidspunkt for visitasjon
  • Kontroll av siktlengder, reg. sikthindre
  • Registrering og kontroll av skilt mot vegfarende og signalskilt ”Tog kommer”
  • Registrering av lemmer (tilstand og bruk)
  • Veiføring (stigningsforhold/krysningsvinkel/vegbredde mv.)
  • Dokumentasjon
  • Andre forhold
  • Rapportering og oppfølging
  • I tillegg bør det utarbeides rutiner for innlegging av planovergangslem:
    • kontroll med at krav er oppfylt når lem legges inn og kontroll med at planovergang faktisk ikke er i bruk når lemmen er tatt ut
  • Forbedre kunnskapen om og kontrollen med hvilke typer kjøretøy som benytter planovergangen
  • Forbedre kunnskapen om trafikkmengdene på planovergangen

I tillegg til regelverk for visitasjon vedr. planoverganger, bør det lokalt utarbeides prosedyrer eller lignende for å ivareta regler, registreringer, rapportering og oppfølging mv.

6.1.2.4.7 Tiltak utover krav til sikt og skilting

I tillegg til sikt og skilting vil det kunne være aktuelt med ytterligere tiltak for å bedre sikkerheten for planoverganger. Tiltak fra denne listen skal vurderes i følgende tilfeller:

  • Der kjøretøygruppen tilsier dette
  • Der siktkrav ikke kan tilfredstilles
  • Der veigeometri (stigningsforhold, krysningsvinkel etc.) tilsier økt kjøretid * (gitt anbefalinger veigeometri i vedlegg 1)

Tiltak som skal vurderes i tillegg til nødvendig siktlengde og skilting:

  • Bruksbegrensninger

MERKNAD: Mange av punktene under bør gjennomførs også der krav til sikt og skilt tilfredstilles.

  1. avtale om bruk
  2. bruker varsler om kjøring over planovergang
  3. låsing av grind
  4. fjerne lemmer
  5. bruksbegrensing for lange kjøretøy
  6. parkeringsplass på ”riktig side” av sporet, kryssing av spor til fots
  7. vakt etter avtale (kontakt med togleder)
  8. fjerning/nedleggelse av planovergang
  • Lavere toghastighet
  • Nye varslingssystemer
  • Økt siktlengde utover krav (i tillegg til fri sikt for eksempel ved bruk av speil)
  • Skilting for veitrafikanter der veitrafikanter med lange/tunge transporter henstilles om å ringe togleder (txp dersom strekningen ikke er fjernstyrt) før de passerer planovergangen. Det kan dermed også bli aktuelt å vurdere togleders og txps rolle i forbindelse med planovergangskryssinger, og ev. endrede rutiner mv..
  • Sikring av planovergang
  • Bygging av planskilt krysning
  • Forbedring veikvalitet
    • utbedring/omlegging av vei
    • økt vedlikehold av kryssende veier
    • strøkasser
  • Andre tiltak
6.1.2.4.8 Anbefalinger veigeometri

Det er i hovedsak 3 ting som bør vektlegges når det gjelder veigeometrien ved planoverganger:

  1. Lengdeprofilet (stigningsforholdene ved inn-/utkjøringer på planoverganger)
  2. Veilinjen (horisontalradius og retningsvinkel i forhold til jernbanesporet)
  3. Veibredden (normalprofil, breddeutvidelse (radius ved kjørebanekant) og skulderbredde)

Lengdeprofilet For å oppnå en optimal passering av jernbanesporet, bør linjepålegget inn mot en planoverovergang være tilnærmet flatt. Med tanke på vedlikehold og nødvendig drenering må imidlertid den første delstrekningen ha et mindre fall vekk fra sporet. Anbefalt krav er fall på 2,5% (1:40) i en avstand på minimum 4,5 meter målt fra nærmeste skinnestreng. Anbefalte grenseverdier for tilstøtende delstrekning er fall på 3,3% (1:30) eller stigning på 5% (1:20) over en lengde på minimum 3,5 meter. Det videre lengdeprofilet (utover 8 meter fra nærmeste skinnestreng) vil være avhengig av krav til vegklasse og det kjøretøyet som er dimensjonerende for planovergangen. Ingen permanente kjøreveger anbefales imidlertid å ha større stigning/fall enn 12,5% (1:8).

Veilinjen Generelt er kravet at kryssing av planovergang skal anordnes vinkelrett på sporet. Dimensjonerende hastighet for veger inn mot en privat planovergang bør ikke være større enn 30 km/t, men for planoverganger uten sikringsanlegg skal det være generell stopplikt (dvs. såkalt ”usikret” pl.o. som kun er sikret med grinder).

Veibredden Bredden på vegene, og dermed bredden på kjørelem og grindåpninger, må først og fremst tilpasses hvilken bruk som er avtalt for planovergangen. Ved både nyanlegg og omlegging av private veger, kan med fordel ”Normaler for landbruksveger med byggebeskrivelse” benyttes.

  • En landbruksveg i vegklasse 7 eller 8, har normalt en bredde på 3,5 meter (unntaksvis 3,0 meter for traktorveg i vegklasse 8).
  • En gårdsveg eller skogsbilveg i vegklasse 3, har normalt en bredde på min. 4,0 meter.
  • Videre skal en grendeveg i vegklasse 2, skal ha en bredde på min. 4,5 meter.

Men helårs bilveger som senere kan inngå i det offenlige vegnettet (kommunal eller fylkeskommunale veg) må utformes i samsvar med Statens vegvesens veinormaler.

6.1.3 Endringer i siktmodellen 1.1.2006

I TRV-versjon 1.1.2006 ble siktmåling ved planoverganger spesifisert til måleavstand 4,0 m fra spormidt og målehøyde 1,8 m fra siktepunkt for planoverganger benyttet kun av fotgjengere. Det ble utarbeidet et nytt vedlegg ”Registreringsskjema visitasjon av planoverganger”. Tidligere hadde det i hver region blitt benyttet ulike registreringsskjemaer ved visitasjon av planoverganger. Nytt felles registreringsskjema gjorde registreringen enhetlig og enklere mht. registreringer i Banedata. Skjemaet ble utarbeidet i samarbeide med prosjektgruppen ledet av IU (Infrastruktur Utbygging i Jernbaneverket) for koordinering av tiltak ved planoverganger (tidligere ”Planovergangsprosjektet”).

6.1.4 Endringer i siktmodellen 1.1.2007

Til regelverksendringen i 2007 ble det utarbeidet en egen adferdsmodell for kryssing av planovergang som bare blir benyttet av fotgjengere og som ikke er en del av et offentlig gangveisystem.

Bakgrunn for endringene var som følger:

JD 532, kap. 10 beskriver modell for kryssing av planovergang som bare benyttes av fotgjengere. I modellen benyttes følgende parametere for planoverganger som bare benyttes av fotgjengere:

  • Sikt skal måles i avstand 4,0 m fra spormidt ved planovergang
  • Ved fotgjengeroverganger måles det i høyde 1,8 m (ved planovergangen)
  • Dersom planovergangen bare benyttes av fotgjengere, skal t = 5 s benyttes

Modellen baserer seg dermed på at en høy person (1,90 m) tar beslutningen om å krysse planovergangen 4 m fra spormidt og bruker 5 s på de 6,0 m som er avstanden til trygg sektor på andre siden av jernbanelinja. Dette tilsier en ganghastighet på 1,2 m/s.

Forslag til ny modell:

For fotgjengeroverganger som ikke er en del av et offentlig gangsystem kan imidlertid modellen avvike fra et alminnelig atferdsmønster. Det foreslås derfor å tilpasse modellen noe.

  • Sikt skal måles i avstand 2,5 m fra spormidt ved planovergang
  • Ved fotgjengeroverganger måles det i høyde 1,5 m (ved planovergangen)
  • Dersom planovergangen bare benyttes av fotgjengere, skal t = 3,75 s benyttes.

Modellen baserer seg dermed på at en person (høyde = 1,60 m) tar beslutningen om å krysse planovergangen 2,5 m fra spormidt og bruker 3,75 s på de 4,5 m som er avstanden til trygg sektor på andre siden av jernbanelinja. Dette tilsier en ganghastighet på 1,2 m/s.

Konsekvenser for sikt:

Siktkravene kan dermed reduseres med 25 % for denne type planovergang. Ytterligere reduksjon må verifiseres vha. spesiell måling for hver enkelt planovergang.

Vvurdering av endringen:

I perioden 1991-2001 er det registrert 150 planovergangsulykker hvorav 3 ulykker der fotgjengere har vært involvert. 2 av fotgjengerulykkene skjedde på planoverganger uten sikringsanlegg med 1 død og 1 alvorlig skadet som konsekvens. Ved å endre beslutningspunktet for kryssing fra 4,0 m til 2,5 m tilpasses modellen kun allerede etablert atferd. I tillegg har man på denne typen planovergang normalt lavt støynivå og man vil også kunne oppfatte lyden av toget (tuting, hjulstøy, motorstøy, skinnelyd). Definisjonen av en egen modell for denne typen planoverganger skulle dermed ivareta det sikkerhetsnivået som den udifferensierte modellen for fotgjengere i JD 532 foreskriver. Ny modell vil bli vurdert implementert i JD 532 ved neste revisjon (01.01.07).

6.1.5 Endringer i siktmodellen 29.8.2014

I avsnitt 2.1 Siktkrav, punkt d er kravene til sikttid ved personoverganger endret og blitt avhengig av bruken av den. Dette har også ført til at i avsnitt 2.1.1 Måling av sikt, punkt c er tidligere sikttid for fotgjengere skiftet ut med henvisning til avsnitt 2.1 Siktkrav, punkt d.

Bakgrunn for endringen:

Fra Statens havarikommisjon for transport, rapport JB 2013/05:

Siktkravet som ligger til grunn for personoveranger er satt ut fra et tidsforbruk på 3,75 sek. for gående for å krysse en planovergang. Havarikommisjonen er usikker på om dette er tilstrekkelig for personer i følge med barn, for funksjonshemmede og eldre. Det er havarikommisjonens oppfatning at det bør gjøres en vurdering av det tidsforbruket for kryssing som er lagt til grunn for denne type brukere og se om det fortsatt er tilstrekkelig.

Dagens minstekrav til sikttid ved fotgjengeroverganger over spor er 3,75 s. Dette er knapt og forutsetter at kryssing skjer meget målbevisst og av føre personer. Det har i de senere år vært flere alvorlige ulykker i forbindelse med fotgjengeroverganger over sporet og det kan synes fornuftig å gi brukerne noe bedre tid. Vi har konsultert hva som gjøres i enkelte andre land:

UK: Kravene er presentert i et dokument utgitt av ORR (Office of Rail Regulation) Kravet til minste siktlengde for vinkelrette fotgjengeroverganger over ett spor er der satt til 5 s hvor siktlengden er fastsatt fra et punkt minimum 2 m fra nærmeste skinne og er av ORR vurdert gyldig for hastigheter opp til 160 km/h. Tillatt hastighet på strekninger med fotgjengeroverganger er mindre enn dette i Norge.

Hvis man i tillegg tar hensyn til togbredde (max 3,6 m) personbredde (0,4 m) samt krever en sikkerhetsavstand på minimum 0,5 m etter passering av overgangen blir ganglengden i kryssingen 5,5 m. Med en ganghastighet på 1,2 m/s gir det en kryssingstid på ca 4,6 s. Hvis ganghastigheten er 1 m/s blir kryssingstida 5,5 s.

For en fotgjengerovergang med lite trafikk og primært beregnet på turgåere og rimelig gangføre personer kan 5 s sikttid tas som utgangspunkt. På steder hvor fotgjengerne kan komme i klynger eller er uerfarne i bruk av plankryssingen, eksempelvis større arbeidsplasser, idrettsanlegg, badeplasser, pleiehjem, skoler eller lignende, skal minimum siktlengde økes med minimum 1 s, dvs minimum siktlengde 6 s.

Forslag til tekst:

d) Dersom planovergangen bare benyttes av fotgjengere, skal følgende sikttid benyttes.

Tabell 1: Sikttid ved personoverganger

Type overgang Sikttid, t (sek)
fotgjengerovergang med lite trafikk, primært beregnet på turgåere 5
fotgjengerovergang ved større arbeidsplasser, idrettsanlegg, badeplasser, plejehjem, skoler eller lignende 6

Ved bruk av speil kan kravet til sikttid reduseres til 3,75 s.


6.1.6 Endringer av krav til skilting ved planoverganger (TRV 9.9.2019)

6.1.6.1 Nødnummermerking

I forbindelse med Sikkerhetstilrådning JB nr. 2018/15T fra Statens havarikommisjon for transport har Bane NOR fått følgende sikkerhetstilrådning:

Statens havarikommisjon for transport tilrår Statens jernbanetilsyn å anbefale Bane NOR SF å merke alle planoverganger med nødnummer og stedsangivelse.

Bane NOR har derfor utarbeidet et utkast til nødnummermerke som skal settes opp på planoverganger hvor det er mobildekning. Plassering må tilpasses stedlige forhold.

I tabellen i avsnitt 2.1 Fysiske sikringstiltak og i kolonnen "Tilhørende skilting" skal "Nødnummermerke" tilføres for følgende "Sikringsmetoder/Tiltak":

  • Usikret
  • Ubevoktet grind
  • Ringerutiner
  • Hastighetsreduksjon av tog
  • Enkel varsellampe
  • Enkelt vegsignalanlegg
  • Vegsignalanlegg (La)
  • Halvbom
  • Helbom

Forslaget om oppdatering av Overbygning/Vedlikehold/Planoverganger/Vedlegg Skilting av planoverganger, 2 Skilt og signaler som kan benyttes for planoverganger, tabell 2 er en følge av at det skal innføres nødnummermerking på de fleste planoverganger. Nødnummermerke vil redusere faren for at kjøretøy som får stopp midt på en planovergang eller tett inntil sporet på en planovergang, blir påkjørt av tog, fordi ved å sette opp nødnummermerket på de fleste planoverganger vil veifarende kunne få rask kontakt med nødetater. Dette kan være med å hindre sammenstøt mellom tog og veikjøretøy.

Imidlertid faller ikke nødnummermerket inn under tabell 1 "Offentlige trafikkskilt og signaler som benyttes ved planoverganger på veier åpne for alminnelig ferdsel" eller tabell 2 "Private (Bane NOR's) skilt som benyttes ved planoverganger på private veier" i nevnte avsnitt. Det anbefales derfor at det lages en ny tabell 3 "Private (Bane NOR's) merker som benyttes ved planoverganger" i samme avsnitt. Nødnummermerket skal settes opp på nesten alle planoverganger uavhengig om det er offentlig eller privat vei. Det vil være sikringsmetode/-tiltak i tabellen i Overbygning/Vedlikehold/Planoverganger/Vedlegg/Veiledning sikringsmetoder og tiltak/2.1 Fysiske sikringstiltak som avgjør om merket skal settes opp, foruten om det er mobildekning på stedet, og om banen har regulær trafikk.

Til slutt i tekstbolken foran tabellene i Overbygning/Vedlikehold/Planoverganger/Vedlegg/Skilt ved planoverganger/2 Skilt og signaler som kan benyttes for planoverganger, ble følgende setningsavsnitt tatt inn:

Private (Bane NOR's) merker for planoverganger til orientering og informasjon er vist i Tabell 1.

Følgende nye tabell ble foreslått tatt inn i avsnitt 2 Skilt og signaler som kan benyttes for planoverganger:

Tabell 1: Private (Bane NORs) merker som benyttes ved planoverganger
Skiltsymbol Skilt nr. Betegnelse Benyttes i eksempel
1a 1b 1c 2 3a 3b
Nødnummermerke x x x x x x

6.1.6.2 Endringer til krysningstid for traktor/landbruksmaskin

Forslagstiller mener at avstanden til senterlinje spor når man skal måle opp nødvendig sikt for traktorer/landbruksmaskiner er for kort. Landbruksmaskiner har generelt vokst i størrelse både fordi selve maskinen/traktoren har blitt større/lengre, og fordi det er blitt vanligere å montere diverse utstyr på lasteren.

I dag skal siktlengder måles fra et punkt 6 m fra senterlinje spor, eventuelt 5,25 m fra nærmeste skinnestreng. Tas det utgangspunkt i det dynamiske referanseprofilet NO1, må ikke noen deler av kjøretøyet være nærmere senterlinje spor enn 1,8 m for å unngå sammenstøt tog/kjøretøy, dvs. at avstanden fra førersetet i kjøretøyet og frem til enden av kjøretøyet ikke må være lenger enn 4,2 m (6 m - 1,8 m = 4,2 m).

På bakgrunn av opplysninger i endringsforslaget, opplysninger fra Felleskjøpet i Trondheim og målinger gjort på traktorer hos Drift i Bane NOR på Marienborg, finnes følgende avstander fra førersetet og frem til enden av kjøretøyet:

  • 5,20 m Opplysning fra endringsforslaget.
  • 4,5 m + løfteredskap ~ 5,5 - 6,0 m Felleskjøpet i Trondheim 1)
  • 6,6 m Meget stor traktorgraver i Bane NOR 2)
  • 4,9 m Massey Ferguson 3075 traktor 3)

1) Felleskjøpet i Trondheim har målt avstanden fra førersetet i en "normal" landbrukstraktor i dag og til helt fremme på lasteren, til 4,5 m. I tillegg kommer løfteredskapet/utstyret og f.eks. rundball. Dette vil kunne gi en total lengde på rundt 6 m.

2) Avstanden fra førersetet til forkant snøkost på en Huddig 1260B traktorgraver som Bane NOR Drift har på Marienborg, er målt til 6,2 m inklusive kosten, men 6,6 m hvis et deksel inkluderes.

3) En Massey Ferguson 3075 traktor (på Marienborg) er målt til 4,9 m fra førersetet og frem til fronten på en skuffe.

Alle de fremkomne avstandene er større enn 4,2 m som er største lengde på hva avstanden fra førersetet og frem til enden på en landbruksmaskin kan være i dag, for at det ikke skal bli sammenstøt mellom kjøretøy og tog.

Avstanden på 6,6 m fra førersetet i traktorgraveren til Drift i Bane NOR på Marienborg og til enden på snøkosten, er ikke lengden for en «normal» landbrukstraktor med løfteredskap. Hvis man derimot tar utgangspunkt i opplysningene fra Felleskjøpet i Trondheim og setter på et løfteredskap på 1,5 m, blir total avstand 6,0 m. Dette vil da inkludere avstanden fra førersetet til fremre ende på kjøretøyet både for traktoren nevnt i endringsforslaget (5,2 m), største avstand fremkommet ved opplysninger fra Felleskjøpet (6,0 m; Bruker største lengde fra Felleskjøpet etter innspill fra P. Hansson.) og Massey Ferguson 3075 traktoren (4,9 m).

Hvis avstanden fra førersetet til enden av landbruksmaskinen settes til 6,0 m, og man legger til det halve dynamiske referanseprofilet NO1 på 1,8 m, vil avstanden fra senterlinje spor til punktet hvor siktlinjene skal måles fra, bli 7,8 m, dvs. en økning av dagens avstand på 1,8 m. Dette vil redusere risikoen for sammenstøt mellom landbruksmaskin og tog betydelig.

Statistikk fra Synergi på antall tilløp til og sammenstøt mellom traktor og tog de siste 15 årene (2004 – 20.02.2019) på usikrede planoverganger, viser:

  • Totalt antall usikrede planoverganger: 969 (pr. 31.12.2018) hvorav 249 i daglig bruk. (T.V.Fagervold)
  • Totalt antall tilløp til sammenstøt traktor/tog på usikrede planoverganger: 262
  • Totalt antall sammenstøt traktor/tog på usikrede planoverganger: 12 (1 død, 2 personskader)

Dette gir:

  • 0,00083 sammenstøt traktor/tog pr. plo og år (12/969/15)
  • 0,01803 tilløp til sammenstøt traktor/tog pr. plo og år (262/969/15)

Disse tallene viser at det er behov for å endre kravene til måling av sikt for traktorer.

I endringsforslag #2280 er tabell 1 i Overbygning/Vedlikehold/Planoverganger 2.1 Siktkrav oppdatert i forhold til endringer i Statens Vegvesen Håndbok N100 Veg- og gateutforming, for klasseinndelingen av dimensjonerende kjøretøy. Lastebil (L) og traktor uten henger hadde tidligere lengde 11,00 m, mens Stor lastebil (SL) og traktor med henger etc. hadde definert lengde 15,5 m. I endret Håndbok N100 er lengden på lastebil (L) økt til 12, 00 m, mens storlastebil (ST) er sløyfet. Når sikt skal måles i avstand 7,8 m fra senterlinje spor for traktor, dvs. en økning på 1,8 m, vil dette også dekke/innbefatte at lastebil (L) blir definert 1 m lengre enn tidligere i Håndbok N100.

Hensikten med endringsforslaget er å ta høyde for traktorer som har last foran, f.eks. høyballer. Det ansees derfor ikke hensiktsmessig å gjøre denne endringen også på planoverganger som kun trafikkeres av personbiler og andre kjøretøy hvor sjåføren sitter foran i kjøretøyet. Dessuten vil det være vanskeligere og dyrere å skaffe sikt 7,8 m fra spormidt 1,1 m over veibanen enn å sørge for sikt samme sted 2,0 m over veibanen, jfr. dagens 2.1.1 punkt b).

På grunnlag av innhentede opplysninger om lengde på «normale» landbruksmaskiner/traktorer og vurderingene som er gjort, foreslår Teknologi to tillegg i Overbygning/Vedlikehold/Planoverganger, avsnitt 2.1.1 Måling av sikt punkt a):

I første setning tilføyes «normalt»: Sikt skal normalt måles i avstand 6,0 m fra spormidt (~ 5,25 fra nærmeste skinne) i det aktuelle kjørefelt.

Ny setning: Der siktkrav fremkommer som følge av «Traktor ute henger» eller «Traktor m/henger etc.» skal sikt måles i avstand 7,8 m fra spormidt (~ 7,05 m fra nærmeste skinne) i det aktuelle kjørefeltet.

6.1.6.3 Andre endringer

Det ble også gjort andre endringer:

  • Endringer i dimensjonerende kjøretøy og tilhørende kjøretider for bestemming av siktlengde
  • Tilføyd krav til høyde for siktmåling for personbiler
  • Tilføyd krav til avstand og høyde ved siktmåling for lastebiler og vogntog
  • Tilføyd krav til avstand og høyde ved siktmåling for traktorer og landbruksmaskiner
  • Nytt avsnitt med krav til skilting for tog med nedsatt hastighet
  • Fjerning av planovergang tilføyd som mulig tiltak ved fjerning av grind
  • Tilføyd tiltak som bør vurderes for å øke sikkerheten
  • Fjernet baneprioritet som kriterie for valg av sikring og oppdatert referanser til skilt
  • Slått sammen sikringsnivå 3a og 3b, samt oppdatert referanser
  • Tilføyd tabell med mer detaljert beskrivelse av veiklasser og tilhørende veibredde

Det er to forutsetninger knyttet opp til oppsetting av nødnummermerke:

  1. Det må være mobildekning på stedet
  2. Behov for å sette opp nødnummermerke ved planoverganger på baner uten regulær trafikk bør vurderes ut fra stedlige forhold som sikt og toghastighet.

Disse to forutsetningene innføres som fotnoter til nødnummermerke i tabellen i vedlegg Veiledning sikringmetoder og tiltak, 2.1 Fysiske sikringstiltak.

Følgende ajourførte tabell anbefales derfor lagt inn i Teknisk regelverk:


Sikringsmetode / Tiltak Hva skal dette sikre ? Tilhørende skilting ? Kommentarer / Når kan denne sikring benyttes ?
Usikret Ikke relevant
  1. STOPP, se og lytt etter tog / alternativt offentlig skilting.
  2. Nødnummermerke1,2
  3. Høgspenning livsfare på elektrifiserte strekninger.
  4. Tuteskilting for tog hvis relevant.
Planoverganger med liten trafikk og med god sikt, og hvor det ikke er noen grunn til å ha grind.
Planovergangslem fjernet Kjøretøy
  1. Varsam lat at grinda der det er grind
  2. STOPP, se og lytt etter tog.
  3. Høgspenning livsfare på elektrifiserte strekninger.
  4. Tuteskilting for tog hvis relevant.
Akseptabel sikring for skogbruksoverganger og andre planoverganger som er sporadisk i bruk. Imidlertid må det lages en plan for hva som skal gjøres når lem legges i. Eksempelvis kan man da bruke ringerutiner, nedsatt hastighet, mobilt veigsignalanlegg når og hvis vi får utviklet det osv.
Ubevoktet grind

Husdyr Gående Syklende

  1. Varsam lat at grinda
  2. STOPP, se og lytt etter tog.
  3. Nødnummermerke1,2
  4. Høgspenning livsfare på elektrifiserte strekninger.
  5. Tuteskilting for tog.
Planoverganger med god sikt og begrenset trafikk.
Vegetasjonsrydding All trafikk Ikke relevant Dette er det viktigste og billigste tiltaket vi kan gjøre for å bedre sikkerheten på planoverganger. Dette er en del av den daglige driften/vedlikeholdet.
Speil All trafikk Ikke relevant Dette er ikke noen sikring i seg selv, men et verktøy for å øke siktlengden.
Øvrige siktøkende tiltak All trafikk Ikke relevant Andre siktøkende tiltak kan være fjerning av fjellskjæringer, jordvoller, bygninger osv.
Vegutforming Kjøretøy Ikke relevant Det er flere faktorer som kan bedre sikkerheten for veifarende ved kryssing av planovergang:
  1. Vinkel som veien krysser planovergang.
  2. Hvor bratt veien er rundt planovergangen kan ha stor betydning, spesielt om vinteren.
  3. Utforming av planovergangslem, slik at man ikke setter seg fast
Båsgrind

Husdyr Gående

  1. Varsam lat at grinda
  2. STOPP, se og lytt etter tog
  3. Høgspenning livsfare på elektrifiserte strekninger.
  4. Tuteskilting for tog hvis relevant.
Akseptabel løsning på planoverganger med kun gående og god sikt (innenfor kravene).
Ringerutiner Kjøretøy
  1. STOPP, se og lytt etter tog
  2. Opplysningstavle om ringerutiner
  3. Nødnummermerke1,2
  4. Høgspenning livsfare på elektrifiserte strekninger.
  5. Tuteskilting for tog hvis relevant.
For store eller tunge kjøretøyer, og på planoverganger med liten eller sporadisk trafikk, mobildekning, blokkstrekning av fornuftig lengde og togtrafikk av en slik størrelse at dette er hensiktsmessig.
Hastighetsreduksjon av tog All trafikk
  1. Hastighetsskilt for tog
  2. Tuteskilting for tog hvis relevant.
  3. Nødnummermerke1,2
  4. Øvrig skiltning ihht gruppe planovergangen havner i
Hvis planovergangen ikke har en akseptabel risiko, og man på kort sikt ikke kan få gjennomført en tilfredsstillende sikring, må hastighetsreduksjon gjennomføres. Hastighetsreduksjon er et spesielt viktig verktøy på baneprioritet (4)-5.
Trafikk-reduserende tiltak All trafikk Skiltning ihht gruppe planovergangen havner i

Det å begrense trafikkmengden kan være et meget godt risikoreduserende tiltak. Eksempler på tiltak kan være:

  1. Skilting for gjennomkjøring forbudt
  2. Stenge for biltrafikk
  3. Legge hindringer i veien som gjør det lite hensiktsmessig å benytte denne veien.
Enkel varsellampe

Gående Syklende Kjøretøy

  1. STOPP, se og lytt etter tog
  2. Varsellampe skilt
  3. Nødnummermerke1,2
  4. Høgspenning livsfare på elektrifiserte strekninger.
  5. Tuteskilting for tog.
  1. Jordbruksoverganger sporadisk i bruk og/eller kun med kjente brukere
  2. Boliger
    1. Maksimalt 1-2 boliger på prioritet 1-2
    2. Maksimalt 2-4 boliger på prioritet 3-5
Enkelt vegsignalanlegg

Gående Syklende Kjøretøy

  1. Standard veiskilting for offentlig vei
  2. Nødnummermerke1,2
  3. Høgspenning livsfare på elektrifiserte strekninger.
  4. Tuteskilting for tog.
Planoverganger på privat vei med liten trafikk, maksimalt rundt 40-60 biler pr. døgn
Vegsignalanlegg (La)

Gående Syklende Kjøretøy

  1. Standard veiskilting for offentlig vei
  2. Nødnummermerke1,2
  3. Høgspenning livsfare på elektrifiserte strekninger.

På strekninger med stor bil og tog trafikk hvor det ikke er hensiktsmessig å lage en planfri løsning.

  1. Ett spor
  2. Mellom 50 og 100 biler pr. døgn
Halvbom

Gående Syklende Kjøretøy

  1. Standard veiskilting for offentlig vei.
  2. Nødnummermerke1,2
  3. Høgspenning livsfare på elektrifiserte strekninger.

På strekninger med stor bil og tog trafikk hvor det ikke er hensiktsmessig å lage en planfri løsning.

  1. Ett spor
  2. Mellom 100 og 1.000 biler pr. døgn
  3. Hastighet på tog mindre enn 130 km/timen
Helbom

Gående Syklende Kjøretøy

  1. Standard veiskilting for offentlig vei.
  2. Nødnummermerke1,2
  3. Høgspenning livsfare på elektrifiserte strekninger.

På strekninger med stor bil og tog trafikk hvor det ikke er hensiktsmessig å lage en planfri løsning.

  1. Flere spor
  2. Flere enn 1.000 biler pr. døgn
  3. Hastighet på tog større enn 130 km/timen
Vaktmann All trafikk Ikke relevant På planoverganger som er i periodisk bruk, typisk skogbruksoverganger, kan dette være et godt tidsbegrenset tiltak.
Låst All trafikk Ingen skilting eller eventuelt infoskilt om hvor nøkkel kan skaffes På planoverganger med liten eller sporadisk trafikk med hovedsakelig kjente brukere. Nøkkel kan utdeles og avtale kan inngås med hver enkelt bruker. Dette tiltaket må ofte sees i sammenheng med ringerutiner.
Gjerdet All trafikk Ingen skilting Dette er en fullgod sikring, og er siste skrittet før en planovergang går fra ute av bruk til nedlagt, mens man venter på å få dette tinglyst.
Stengning All trafikk Eksisterende skilting fjernes
  1. Jordskifte
  2. Kjøp av eiendom
  3. Ren stengning
Stengning ved alternativ adkomst All trafikk Eksisterende skilting fjernes

Dette kan være en god løsning, og kan i prinsippet brukes svært mange steder. Budsjettrammene strekker dessverre ikke til slik at vi kan gjøre dette overalt, hvilket betyr at denne løsningen kun kan benyttes på:

  1. Svært risikoutsatte planoverganger hvor andre løsninger ikke fører frem.
  2. Planoverganger hvor vi kan få et vesentlig eksternt bidrag.
  3. Planoverganger hvor man kan finne fram til rimelige løsninger
Sanering / Planfri løsning All trafikk Eksisterende skilting fjernes

Dette er den beste løsningen, og kan i prinsippet brukes overalt. Budsjettrammene strekker dessverre ikke til slik at vi kan gjøre dette overalt, hvilket betyr at denne løsningen kun kan benyttes på:

  1. Svært risikoutsatte planoverganger hvor andre løsninger ikke fører frem.
  2. Planoverganger hvor vi kan få et vesentlig eksternt bidrag.
  3. Planoverganger hvor man kan finne fram til rimelige løsninger
  1. Settes bare opp hvis det er mobildekning på stedet.
  2. Ved planoverganger på baner uten regulær trafikk bør oppsetting av nødnummermerke vurderes ut fra stedlige forhold som f.eks. sikt og toghastighet.

6.1.7 Differensiering av siktkrav for traktor med og uten henger innført i TRV-versjon 11.2.2021

På bakgrunn av innspill om ytterligere å øke sikkerheten på planoverganger uten veisikringsanlegg, er det utarbeidet forslag til noen endringer i forbindelse med siktkrav TRV:04391. De 3 gruppene for dimensjonerende kjøretøy foreslås beholdt, men "Traktorer uten og med henger" deles igjen opp og legges i hver sin gruppe. "Traktor uten henger" legges til gruppen "Lastebiler (inkl. brannbiler med stige) (L)" og kjøretiden foreslås økt fra 7 s til 10 s. Det er på bakgrunn av målinger utført høsten 2019.

Tanken med endringsforslaget er også at det innføres muligheter for ringerutiner for alle planoverganger, men det er kun hvor siktkrav bare oppfylles for kjøretid på hhv. 5 s og 10 s som trenger eget underskilt til "Opplysningsskilt for lange eller tunge kjøretøy".

På planoverganger hvor siktkravet er oppfylt for 5 s kjøretid over planovergangen, foreslås at det settes opp "Opplysningsskilt for lange eller tunge kjøretøy" med underskilt hvor det står "Gjelder også traktorer og lastebiler". På planoverganger hvor siktkravet er oppfylt for 10 s kjøretid over planovergangen, foreslås at det settes opp "Opplysningsskilt for lange eller tunge kjøretøy" med underskilt hvor det står "Gjelder også traktor med henger". Tabell 2 "Nødvendig siktlengde [m] ved planoverganger" må oppdateres med ny kolonne for kjøretid 10 s, mens kolonnen for 7 s slettes.

Det foreslås også en ny kolonne i Tabell 1: Kjøretid over planoverganger som viser hvilket underskilt som skal brukes sammen med "Opplysningsskilt for lange eller tunge kjøretøy".

I avsnitt 2.2 Siktkrav punkt c) er det gjort endringer i tabell 1, dvs. "Traktor med og uten henger" er igjen splittet i to forskjellige kjøretøygrupper, og kjøretiden som dimensjonerende kjøretøy må ha for å komme over planovergangen, er økt i én kjøretøygruppe. I tillegg er det lagt til en kolonne som viser hvilket underskilt som må settes opp i tillegg til "Opplysningsskilt for lange eller tunge kjøretøy" i det aktuelle tilfellet.

"Traktor uten tilhenger" er nå slått sammen med "Lastebiler (inkl. brannbiler med stige) (L)", mens "Traktor med henger" blir værende i den kjøretøygruppen som den er i dag. Kjøretidene er justert opp for "Lastebiler (inkl. brannbiler med stige) (L)/Traktor uten henger" fra 7 s til 10 s.

Ny Tabell 1: Kjøretid over planoverganger (Dimensjonerende kjøretøy og Kjøretid)

Personbiler, varebiler og kombibiler (P) / Mindre lastebil (LL) 5 s

Lastebiler (inkl. brannbiler med stige) (L) / Traktor uten henger 10 s

Traktor med henger / Andre landbruk- og skogbruksmaskiner / Vogntog (VT) 15 s med fotnote 1)


Dimensjonerende kjøretøygruppe (P), (LL), (L) og (VT) er fra Statens vegvesen Håndbok N100 Veg- og gateutforming.

Selv om ofte traktor har med en henger eller annen redskap, er det ønskelig å kunne differensiere på traktor uten og med henger, fordi det har betydning for nødvendig kjøretid over planovergangen og dermed siktlengde. Når det gjelder kjøretid for traktor uten/med henger, ble det høsten 2019 foretatt målinger av kjøretid for en traktor uten henger og en traktor med tilhenger over en planovergang rett sør for Støren stasjon på Rørosbanen (endringsforslag #2489). Forslaget til kjøretid etter disse målingene var 10 s for traktor uten henger og 15 s for traktor med henger.

De nye underskiltene for "Opplysningsskilt for lange eller tunge kjøretøy" vil ha følgende tekster: 

- Gjelder også traktorer og lastebiler

- Gjelder også traktorer med henger

og skal settes opp hhv. i forbindelse med kjøretøygruppe "Personbiler, varebiler og kombibiler (P) / Mindre lastebil (LL)" og "Lastebiler (inkl. brannbiler med stige) (L) / Traktor uten henger" hvor siktkravet for kjøretid 15 s ikke er oppfylt.

Tabell 2 "Nødvendig siktlengde [m] ved planoverganger" er oppdatert med en kolonne for siktlengder når kjøretiden er 10 s, mens kolonnen for kjøretid 7 s, er slettet.

Deling av "Traktor uten og med henger" i forskjellige kjøretøygrupper, økning av kjøretiden for kjøretøygruppe "Lastebiler (inkl. brannbiler med stige) (L) / Traktor uten henger" til 10 s og forslaget om skilting for ringerutine på på alle planoverganger som ikke har nødvendig siktlengde for større kjøretøy, vil øke sikkerheten uten at siktlengden nødvendigvis behøver å bli lengre. Oppsetting av opplysningsskilt om ringerutine på planoverganger med siktkrav i henhold til 5 s og 10 s, krever behov for unntak fra Jernbaneinfrastrukturforskriften §3-6 i hvert enkelt tilfelle.

På planoverganger hvor "Lastebiler (inkl. brannbiler med stige)(L) / Traktor uten henger" er dimensjonerende kjøretøy vil den økte kjøretiden for denne kjøretøygruppen, uansett kreve lengre siktlengder.

Forslaget ble tatt inn med følgende tekst:

Krav TRV:04391

Nødvendig siktlengde fra planovergang uten veisikringsanlegg til tog er gitt i tabellen nødvendig siktlengde. Valg av dimensjonerende kjøretid, t, avgjøres ut fra hva slags kjøretøy som benytter planovergangen.

I denne sammenheng menes dimensjonerende kjøretøy å være det største kjøretøy som forventes å benytte den enkelte planovergang daglig eller flere ganger pr. uke.

Tabell 2: Kjøretid over planoverganger
Dimensjonerende kjøretøy Kjøretid, t (sek) Underskilt til skilt for ringerutiner
Personbiler, varebiler og kombibiler (P) / Mindre lastebil (LL)
5 1)
Gjelder også traktor og lastebil
Lastebiler (inkl. brannbiler med stige) (L) / Traktor uten henger
10 1)
Gjelder også traktor med henger
Traktor med henger

Andre landbruk- og skogbruksmaskiner

Vogntog (VT)

15 1) 2)

1) Innføring av ringerutine krever unntak fra Jernbaneinfrastrukturforskriften §3-6 i hvert enkelt tilfelle. Ringerutinen utformes i henhold til Krav i operativt regelverk for togframføring.

2) Ved dimensjonering for denne klassen skal man i tillegg vurdere følgende forhold knyttet til sikker passering :

  • vegføring (bør være hor.lengdeprofil og vinkelrett kryssing)
  • behov for ringerutine eller hovedsikkerhetsvakt (siktkrav bortfaller ved ringerutine eller bevoktning)
  • midlertidig lavere kjørehastighet for tog (siktkrav endres i forhold til ny kjørehastighet for tog)


Tabell 3: Nødvendig siktlengde [m] ved planoverganger
Toghastighet

(km/h)

Kjøretid/sikttid t (s)
3,75 5 6 10 15
30 35 45 50 85 125
40 45 60 70 115 170
45 50 65 75 125 190
50 55 70 85 140 210
55 60 80 95 155 230
60 65 85 100 170 250
65 70 95 110 180 275
70 75 100 120 195 295
75 80 105 125 210 315
80 85 115 135 225 335
85 90 120 145 240 355
90 95 125 150 250 375
95 100 135 160 265 400
100 105 140 170 280 420
105 110 150 180 295 440
110 115 155 185 305 460
115 120 160 195 320 480
120 125 170 200 335 500
125 135 175 210 350 525
130 140 185 220 365 545


De anvendte hastigheter, akselerasjoner, lengder og adferdsmønstre representerer i ulik grad konservative verdier. De mest konservative betraktninger er knyttet til passering av planovergang med personbil. Disse betraktninger skal ivareta følgende forhold :

  • dårlig veidekke
  • vinterforhold
  • stigningsforhold
  • krysningsvinkel

Modellen tar ikke hensyn til ekstremt dårlige kjøreforhold som for eksempel islagt kjørebane eller tåke.

For veigeometri (lengdeprofiler, veglinje og vegbredde) er det gitt anbefalinger i en egen veiledning til Teknisk regelverk.

7 Planovergangssikkerhet

7.1 Planovergangsulykker

7.1.1 Planovergangsulykker i Europa

Tabellen viser utviklingen av antall drepte på planoverganger i europeiske land i perioden 2011-2020 (kilde: Eurostat).

Årstall 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
EU - 27 land (fra 2020) 506 563 498 495 465 424 456 442 432 350
Belgia 16 18 13 21 14 12 12 15 15 13
Bulgaria 7 15 11 11 6 5 11 5 7 9
Tsjekkia 34 47 36 46 36 34 36 47 46 44
Danmark 2 5 5 5 2 2 2 3 1 0
Tyskland 56 79 59 67 61 50 73 66 55 48
Estland 15 10 11 5 10 8 13 17 4 2
Irland 0 0 0 1 0 0 0 1 0 0
Hellas 8 6 5 10 11 1 5 7 7 2
Spania 8 8 11 10 8 10 12 10 3 6
Frankrike 40 38 42 51 41 48 41 26 38 22
Kroatia 18 18 13 6 11 5 10 12 11 8
Italia 18 13 14 16 19 15 12 3 5 8
Latvia 8 6 2 3 5 3 7 9 7 1
Litauen 6 4 4 5 3 6 2 3 0 1
Luxemburg 0 0 2 0 0 1 0 2 0 0
Ungarn 38 37 35 28 33 27 33 33 37 41
Nederland 14 19 21 13 12 7 11 13 14 10
Østerrike 43 36 37 27 33 31 26 19 24 19
Polen 86 77 75 65 74 76 57 64 68 54
Portugal 7 11 12 9 6 8 7 7 16 10
Romania 43 59 44 50 29 42 43 34 37 22
Slovenia 6 8 11 9 10 8 6 9 7 5
Slovakia 21 27 18 20 22 12 14 20 16 14
Finland 5 11 4 4 10 6 7 7 6 5
Sverige 7 11 13 13 9 7 16 10 8 6
Norge 2 2 3 2 3 0 2 3 1 2
Sveits 4 8 3 4 4 3 1 2 1 1
Storbritannia 11 10 12 11 3 10 10 5 5 4

7.1.2 Planovergangsulykker i Norge

Figuren nedenfor viser oversikt over antall ulykker og antall drepte fra slutten av 50-årene i Norge. Spesielt før denne tid og delvis i starten av denne perioden økte antall ulykker som en konsekvens av økende motorisert trafikk på veiene. Mot slutten av 50-årene ble det satt inn relativt store ressurser for å fjerne planoverganger eller sørge for utvidet sikring av planoverganger.

Plo-ulykker.png

I 1969 skjedde det imidlertid en kraftig økning av planovergangsulykker. 30 mennesker ble drept dette året. Samferdselsdepartementet satte da ned et utvalg til vurdering av sikkerhetsforholdene ved planoverganger. Utvalget leverte sin innstilling i mai 1970. Av de viktige tiltak som ble anbefalt var supplering med halvbommer på automatiske veisignalanlegg. Dette ble gjennomført i perioden 1972 til 1977 (se figur 6). Omkring 200 planoverganger for offentlig vei ble i denne perioden utrustet med lyd/lys-anlegg supplert med halvbommer. Dette fikk vesentlig betydning for den positive utviklingen av antall planovergangsulykker i årene som fulgte.

7.2 Sikkerhetstiltak

7.2.1 Tema A

7.2.2 Tema B

7.2.3 Hinderdeteksjon

Hensikten med hinderdeteksjon er å forhindre sammenstøt med objekter på planovergang. For at den skal ha en effekt må den veifarende ha stått i ro på planovergangen over en viss tid. Sammenstøt kan forhindres dersom hinderet får mulighet til å flytte seg, eller toget stopper. Sammenstøt kan skyldes kjøretøy som har fått motorstopp på en planovergang eller av andre grunner ikke er i stand til å flyttes raskt. Tiltaket vil derfor ha størst effekt om toget stopper før planovergangen.

For at det skal være mulig å stoppe toget må veien være sperret, og planovergangen være fri når toget er en bremselengde unna planovergangen. Med dagens prosjektering vil hinderdeteksjon kun være aktuelt for planoverganger med helbomanlegg. For dagens planoverganger med lys/lydanlegg og halvbomanlegg kan det ikke utelukkes at det ofte vil finnes kjøretøy på vei over planovergangen også etter at signalene mot tog viser at veien er sperret, og toget må tilsette brems for å kunne stoppe. Ved overgang til ERTMS vil det være mulig å endre kriteriet for når veien anses som sperret på halvbomanlegg dersom hinderdeteksjon ønskes. Dette kan imidlertid føre til flere uønskede bremseinngrep dersom kjøretøy velger å kjøre sikk-sakk forbi bommene. Det vurderes derfor som mest hensiktsmessig å samtidig oppgradere til helbomanlegg dersom hinderdeteksjon skal benyttes.

7.2.3.1 Typer hinderdeteksjon

Et ideelt hinderdeteksjonssystem trenger å gi en sikkerhetsintegritet som ikke er verre, og ideelt bedre, enn et tradisjonelt veisikringanlegg, forårsake ingen eller minimale forsinkelser på tog på grunn av utstyrssvikt eller falske deteksjoner, være rimelig når det gjelder livsløpskostnader, operere under alle opptredende klimatiske forhold og være praktisk å bruke og vedlikeholde.

Deteksjonssystemet er påkrevd for å bekrefte at en planovergang ikke er blokkert av en person (inkludert små barn eller noen som kan ha falt om) eller av noen gjenstander som kan forårsake skade på et bevegelig tog. Det kreves separate teknologisystemer for å bekrefte at planovergangen er stengt av barrierer eller porter, og bare når deteksjonssystemet igjen har bekreftet at planovergangen er fri for hindringer, kan et tog fortsette over planovergangen. Dette kan oppnås ved å signalere stopp for passerende tog.

Deteksjonssystemet må bekrefte at en person ikke er fanget rett innenfor beskyttelsesbarrierene og ikke bør forveksles av ikke-skadelige ting som parasoller (ikke holdt av en person), pappesker, aviser, tåke, fallende snø eller kraftig regn . Deteksjonssystemet vil bli utsatt for elektriske forstyrrelser fra trekk- og kraftsystemer, samt støv og skitt fra passerende tog. Det må ikke forstyrre togsignal- eller kommunikasjonssystemet og må overholde alle relevante regler for elektromagnetisk kompatibilitet.

Disse kravene er ofte i konflikt med hverandre. For eksempel kan det være mulig for et bestemt system å tilby gode sikkerhetsfordeler, men bare på bekostning av betydelig driftsforsinkelse. Deteksjonssystemet må også ha et grensesnitt mot eksisterende jernbaneinfrastruktur, og ikke påvirke verken rullende materiell eller driftsprosedyrer.

Et hinderdeteksjonssystem kan bruke en eller flere ulike deteksjonssystemer og deteksjonsmetoder, for eksempel den første generasjonen av Network Rails planoverganger med hinderdeteksjonssystemer bruker både radar og laserbilde gjenkjenning og rekkevidde (LiDAR).


Video og termografering

Et planovergang uten signalering mot tog kan bekreftes klar enten ved direkte observasjon eller av en kompetent overvåker som bruker kameraovervåkning. Kan bildebehandlingsteknologi automatisere den menneskelige kontrollen av planovergang?

Figur: Videodeteksjonsanlegg fra SelectraVision

Et åpenbart problem med bruk av videoteknologi er hva som skjer om natten eller under tåke når det er vanskelig å se, selv med et automatisert system som sannsynligvis ikke er så følsomt for vanskelige lysforhold som en overvåker. Planovergangen vil derfor ha behov for god belysning, selv om dette vil være til liten nytte under tåkeforhold.

Kameraene vil bli overvåket via programvarealgoritmer med piksel-for-piksel-analyse for å identifisere objekter eller personer. Videosystemer kan imidlertid ikke lett detektere massen eller materialegenskapene til et objekt, og kan derfor ikke bestemme viktigheten eller den relative trusselen til et objekt. Derfor kan for eksempel en pappeske eller avis forveksles med et lite barn. Andre vanskeligheter er å kunne identifisere stasjonære gjenstander, og grensene for planovergangen slik at bevegelser rett utenfor planovergangen ikke blir forvekslet med en gjenstand eller person på planovergangen.

Termiske bildekameraer kan overvinne noen av disse begrensningene fordi de skaper et skarpt bilde basert på subtile temperaturforskjeller og ikke påvirkes av miljøutfordringer, som total mørke, røyk eller tåke. De trenger ikke noe lys overhodet og kan ikke bli blendet av direkte sollys.

Det kan være et problem med gjenstander uten at noen varmekilde blir stående på planovergangen, for eksempel en ubremset trailer. Imidlertid kan termisk avbildning vanligvis til og med plukke ut denne typen gjenstander på grunn av temperaturforskjeller, så dette kan være en løsning når den kombineres med annen deteksjonsteknologi.


Mikrobølger/LiDAR

Dette er en metode for hindringsdeteksjon basert på mikrobølger. En antenne sender ut et strålesignal til en sender/mottaker. Hvis en gjenstand kommer inn i strålens bane, blir signalet svekket til mottakeren, noe som indikerer dets tilstedeværelse. Med bruk av reflekser og forsterkere er det mulig å produsere en nett av stråler over et område slik at en stråle kan plasseres på tvers av hver planovergangsinngang og diagonalt fra hjørne til hjørne for å dekke hele planovergangen.

Figur: LIDAR-løsning hos Network Rail levert av LBFoster

Et av verdens første SIL 4-systemer ble installert i Italia og var basert på millimeter bølgelengdestråling. Selv om det var trygt, var systemet veldig følsomt for endringer i temperatur, regn og kondens på sender- og mottakersensorer, noe som resulterte i lav tilgjengelighet. Det var behov for periodiske kalibreringer og vedlikehold, og dette ble forsterket av behovet for et stort antall sensorer for dekning av hele området for planovergangen. Den smale bjelkebredden og det begrensede synsfeltet resulterte i et krav om enda flere sensorer for høye gjenstander.

LiDAR dekker planovergangsområdet med pulser av nærinfrarødt lys som reflekteres fra overflaten til et objekt på planovergangen. De reflekterte pulser kan deretter analyseres for å bestemme dens beliggenhet, retning og hastighet.

Lys har kortere bølgelengder enn radiobølger, noe som betyr at LiDAR har potensialet for større nøyaktighet enn radar. Network Rail brukte LiDAR i sin første generasjon av objektdeteksjonsanlegg for å supplere radaren for å forbedre oppdagelsen av lave objekter. Imidlertid betyr den forbedrede følsomheten også at den har potensial til å være utsatt for små objekter, for eksempel vanndampdråper som utgjør tåke, selv om dette kan dempes med programvarealgoritmer.

Fordi LiDAR trenger lys for å fungere, må utstyret være plassert i et gjennomsiktig hus og er derfor utsatt for vann, skitt og støv på glasset. Dette krever vedlikehold og kan resultere i lav tilgjengelighet. LiDAR har liten strålebredde og et begrenset synsfelt. Derfor kan det være behov for ekstra sensorer for høye og lave hindringer. Noen systemer har mekaniske bevegelige deler som kan resultere i en lav MTBF.


Induksjonssløyfer

En induksjonssløyfe består av en kabel som inneholder en spiraltrådsender/sender (sender og mottaker), anordnet i en sløyfe for å skape et elektromagnetisk felt. Det brukes til å oppdage metallgjenstander, så det er ikke til noen nytte for deteksjon av fotgjengere som vil kreve en annen teknologi. Sløyfen avgir et elektromagnetisk felt og en metallisk gjenstand som kommer inn i det detekterte området forstyrrer feltet og induserer en strøm. Utgangen fra sløyfen mates inn i en prosessor og videre analyse bestemmer hastigheten og størrelsen på objektet som passeres over feltet.

Dessverre er det et økende antall kjøretøy som bruker kompositt- og aluminiummaterialer som gir mindre indusert strøm enn stål, og det er rapportert om problemer med å oppdage lastebiler med høye aksler/bakkeklaring. En annen vanskelighet er å installere og vedlikeholde induksjonssløyfer i overflaten av den kryssende veien.


Strekkmåler

En strekkmåler kan brukes til å måle deformasjonen (belastningen) av et materiale. En strekkmåler kunne installeres i en planovergang og ville oppdage deformasjoner av planovergangslemmen når et kjøretøy kjører over den. Strekkmåleren kan også bruke fiberoptisk teknologi. En strekkmåler skal kunne kalibreres for både kjøretøy og fotgjengere, men kanskje ikke være i stand til å oppdage små barn.

En lignende deteksjonsteknologi er piezometere som er laget av robuste, værbestandige halvledermaterialer og kan legges i planovergangen. Deformasjon av piezometeret forårsaket av vekten av et objekt endrer konduktiviteten, og dette kan analyseres av en detektor for å identifisere tilstedeværelsen av gjenstander.

Piezometre og strekkmålere har potensiale til å være mer pålitelige enn induksjonssløyfer, men å lokalisere detektorene i planovergangen gjør dem vanskelige å vedlikeholde.


Ultralydsensor

Disse er designet for å oppdage tilstedeværelsen av objekter ved endringer i frekvensen av lydbølger. Sensoren avgir ultralydlydpulser som ikke kan høres av det menneskelige øret. Når pulsen når et objekt, reflekteres lyden av overflaten.

Ved en jevn kryssing måtte ultralydsensorer henges over planovergangsområdet og kunne avgi lydbølgene på planovergangen. Flere sensorer ville være påkrevd for å unngå svarte flekker, og på elektrifiserte baner ville utstyret være nær kontaktledningen.

Utstyret vil være mer utsatt for hærverk og skader fra publikum, siden det er mye mer fremtredende ved et kryss enn andre former for påvisning. Det er imidlertid gjort forsøk i USA som karakteriseres som vellykkede ved bruk av en rekke ultralydsensorer som er spredt over et planovergang.


Radar

Denne bruker radiobølger for å oppdage objekter, og det er derfor det kalles radar - radiodeteksjon og rekkevidde. Radardetektoren sender radiobølger over et område og søker etter eventuelle ekko. Hvis et ekko mottas, indikerer dette at en bølge har truffet en overflate av en gjenstand og blitt reflektert tilbake.

Figur: Radar for hinderdeteksjon (IDS)

Ved å analysere ekkoet kan avstanden, posisjonen og hastigheten til et objekt bestemmes. Avstanden til objektet kan identifiseres med tiden det tar for ekkoet å returnere til kilden, eller hvis radaren bruker frekvensmodulering, kan avstanden bestemmes av forskjellen mellom den utsendte frekvensen og ekkoet. Avstanden og retningen kan deretter brukes sammen for å bestemme hvor et objekt ligger innenfor planovergangen. Reflektorer kan installeres på grensene av planovergangen for å få et referansesignal og bruke det til å overvåke statusen til området og selve sensoren.

Figur: Planovergang utstyrt med radardeteksjonssystem (IDS)

Radarsystemer for hinderdeteksjon er utviklet med min. SIL 3-integritet. Disse inkluderer nå systemer med stor signalbredde, så det er ikke behov for flere sensorer for høye og lave hindringer, og som er i stand til å oppdage hindringer som skadelig materiale eller personer (inkludert barn). Radarbaserte systemer er i stand til å påvise gjenstander pålitelig gjennom regn, tåke, snø, hagl, og uten mekaniske bevegelige deler kan de levere høy tilgjengelighet.

En fordel med radar i forhold til andre deteksjonsmetoder er at noen materialer med lav tetthet, for eksempel en tom papirboks, blir ignorert. Bruk av et radar-OD-system vil normalt kreve en radiolisens, men dette betyr at infrastrukturforvalter vil ha eksklusiv bruk av frekvensen og være i stand til å håndtere enhver forstyrrelse.

IDS Ingegneria Dei Sistemi er en italiensk leverandør av radarsystemer for en rekke bruksområder og har omfattende forsknings- og utviklingsanlegg. I september 2016 leverte selskapet i samarbeid med Intecs SpA gjennom Stars Railway Systems-konsortiet sitt første planovergangssystem i Nord-Italia. Totalt er mer enn 100 systemer installert og i drift.

Systemet er i stand til å overvåke planoverganger av hvilken som helst form, med normalt bare en sensor per planovergang. Imidlertid kan opptil fire radarsensorer brukes til å dekke alle geometriforhold. Sensoren er i stand til å operere i alle værforhold og har en forutsagt MTBF lenger enn 10 år. Systemet er i stand til å bli konfigurert til å oppdage objekter fra 100 til 200 mm, så det er en veldig lav risiko for at objekter eller personer (vertikal eller horisontal) ikke blir oppdaget. Erfaringer så langt viser at anleggene fungerer som designet, uten falske alarmer rapportert.

7.2.3.2 Nytte

For at hinderdeteksjon skal ha en effekt må kjøretøyet ha stått i ro en tid før sammenstøtet. Tabellen nedenfor viser fordeling av disse ulykkene på hendelsesforløp ut fra kategorisering i [Synergi].

Sikring Sammenstøt med kjøretøy i bevegelse Sammenstøt med kjøretøy som i ro Person på planovergang
Helbomanlegg 5 7 6
Halvbomanlegg 9 7 0
Lys/lyd-anlegg 3 1 1

En nærmere gjennomgang av disse tallene viser at ytterligere 3 av hendelsene har vært med kjøretøy som har stått i ro på planovergangen. De siste to hendelsene inneholder ikke tilstrekkelig informasjon om hendelsesforløpet, men det antas at hinderdeteksjon ville kunne forhindre alle sammenstøt med kjøretøy på helbomanlegg der kjøretøyet ikke først har kjørt ned bommen. Dette gjelder en av hendelsene. Det er da 11 hendelser fordelt på 10 år. Det forventes dermed at hinderdeteksjon på alle dagens 121 helbomanlegg vil kunne forhindre i snitt 1,1 sammenstøt per år.

En nærmere gjennomgang av hendelsene viser at det ikke er noen dødsfall eller alvorlig skadde som resultat av disse sammenstøtene, men to lettere skadde i tillegg til materielle skader. Hendelsesforløpet er som regel at personene i bilen rekker å komme seg ut før sammenstøtet. Det kan likevel ikke utelukkes at systemet også vil kunne forhindre dødsfall. Med bakgrunn i hendelsene fra de siste 10 årene antas det at hinderdeteksjon på alle helbomanlegg vil kunne forhindre ett dødsfall per 20. år.

10 av 11 hendelser er med personbil, og den siste er en semihenger. Det antas at hendelser med større kjøretøy i stor grad kan forhindres ved at bommen på helbomanlegg allerede fungerer som en hinderdetektor når den blir hindret i å komme helt ned. Faren for storulykke er dermed allerede redusert, og tas ikke med i analysen som nytte.

For å regne på nytte/kost må de være angitt i samme enhet. Nytten omregnes derfor til kroner. Kostnaden for et sammenstøt uten alvorlig personskade eller dødsfall varierer veldig fra hendelse til hendelse. Ved noen hendelser er toget kun så vidt borti et kjøretøy, mens ved andre hendelser kan det være store skader på både kjøretøy, tog og infrastruktur. I tillegg til kostnadene for materielle skader er det kostnader for forsinkelser og ekstra arbeid som følge av hendelsen.

Gjennomsnittlig kostnad for veitrafikkulykke med kun materielle skader er i den norske verdsettingsstudien fra Transportøkonomisk institutt [TØI rapport 1053C/2010 Den norske verdisettingsstudien Ulykker – Verdien av statistiske liv og beregning av ulykkenes samfunnskostnader] anslått å være kr 30 000,- i 2009, noe som tilsvarer kr 36 000,- 2018-kroner. Det er antatt at gjennomsnittskostnadene for sammenstøt med tog vil være en del høyere enn dette, men hendelsene varierer stort, fra at et tog har kommet borti en støtfanger, til sammenstøt med større kjøretøy. Gjennomsnittlig kostnad settes med bakgrunn i dette til kr 500 000,-. Ett dødsfall omregnes til kr 36 437 000,-. Også dette tallet er fra [TØI rapport 1053C/2010 Den norske verdisettingsstudien Ulykker – Verdien av statistiske liv og beregning av ulykkenes samfunnskostnader], justert til 2018-kroner og avrundet.

7.2.3.3 Kostnader

I Norden er det Trafikverket i Sverige som har lengst erfaring med hinderdeteksjonssystemer. Erfaringsinnhenting fra Trafikverket vedr. kostnader og tilgjengelig teknologi ble utført våren 2019. Trafikverkets erfaring var da er at det ikke fantes en fullgod tilgjengelig løsning for hinderdeteksjon. Trafikverket har omtrent 80 anlegg som må skiftes ut, og har siden 2013 jobbet sammen med en leverandør for å få en ny løsning. Løsningen utvikles i henhold til SIL 3, og skal detektere et tysk standardhinder på 1×0,5×0,5 m. Utviklingen har tatt lenger tid enn forventet og løsningen er ennå ikke godkjent. Det er blant annet problemer med vinterforhold og tilgjengelighet. Testanleggene har i dag mange feil, og feil som krever vedlikehold omtrent hver 14. dag, noe som vil gi uakseptabelt høye vedlikeholdskostnader.

Det som finnes av løsninger som benyttes av andre jernbaneforvaltninger har stort sett en anskaffelseskostnad på 7- 800 000,- SEK per anlegg.

I Sverige finnes også 2 anlegg med laser/lidar-teknologi i drift. Disse anleggene er enkle, og benytter standard industrikomponenter. De skanner kun i ett plan, ca. 70 cm over bakken. Anleggene har vært i drift siden 2006 og har vist seg å fungere godt, men mangler godkjenning og har heller ikke noe SIL-nivå, og er ikke gjennomført i henhold til RAMS-standarden (EN 50126). Effekten blir også enklere, da de kun vil detektere kjøretøy som står i planet som skannes, og ikke personer eller andre elementer utenfor dette planet. De vil ikke kunne gi noen garanti for at alle hindre blir detektert. Kostnadene for disse er omtrent 80 000,- SEK per anlegg.

I tillegg til kostnader for anskaffelse av anleggene kommer kostnader for tilpasning til veisikringsanleggene, godkjenningsprosess og vedlikehold. Dette vil blant annet kreve en endringsordre i prosjektet for anskaffelse av infrastruktur for ERTMS. Det må også regnes med kostnader knyttet til forsinkelser som følge av feildeteksjoner. Med bakgrunn i dette er det grunn til å anta at kostnadene for er godkjent anlegg med SIL-sertifisering vil bli i størrelsesorden kr 1 500 000,-. Kostnaden for det første anlegget kan antas å være enda større. Dersom et enklere anlegg uten sikkerhetsansvar tas frem anslås innkjøpskostnadene til å bli omkring en tidel, men også dette vil komme i tillegg til kostnader knyttet til anskaffelse og tilpasning.

7.2.3.4 Nytte/kost

121 anlegg à kr 1 500 000,- med levetid 25 år gir en kostnad på kr 7 260 000,- per år for å utruste alle veisikringsanlegg med helbom med SIL-sertifisert hinderdeteksjon. Nytten blir 1,1 hendelser à kostnad kr 500 000,- per år, og 0,05 hendelser à kostnad kr 36 437 000,- per år, som gir en total nytteverdi på kr 2 371 850,- per år. Nytte/kost blir da 0,33. Høyere kostnad for det første anlegget vil gi enda lavere nytte/kost.

Dersom det viser seg å finnes en enklere løsning til lavere innkjøpspris kan dette gi høyere nytte/kost. Nytte/kost anslås å bli omkring 1 dersom gjennomsnittlig totalkostnad per anlegg med 25 års levetid blir ca kr 500 000,-. Denne verdien må inkludere kostnader knyttet til anskaffelse/utvikling og tilpasning, vedlikeholdskostnader, og kostnader knyttet til og forsinkelser og vedlikehold som følge av eventuell feildeteksjon. Underlag for disse kostnadene mangler i stor grad.

7.3 Referanser