Sandkasse/Frank/Dimensjonering-AT
Innledning
Beregning av strømflyt, termisk belastning og dimensjonering av seriekomponenter i autotransformatorsystem (AT-system) med svært stor belastning kan være utfordrende, fordi strømflyten i lederne ikke er symetrisk. For eksempel vil det på en bane med AT-system (elektrisk utforming E) og stor togtrafikk gå mer strøm i positivleder (PL) enn i negativleder (NL). Om en har elektrisk utforming F vil det gå mer størm i kontaktledningen (KL). Artikkelen her fokuserer på elektrisk utforming E.
Med stor togtrafikk menes at det på en matestrekning går så mange tog at det for det meste av tiden vil være ett eller flere tog mellom hver autotransformator (AT), eller AT-vindu. Da vil det være mye strøm som overføres enfaset (eller 15 kV-nivå) og mindre tofaset (eller på 30 kV-nivå). Desto større trafikk desto større blir denne tendensen. Motsatt vil større effekt i transitt, altså effekt som overføres fra en matestrekning til en annen eller forbi ett eller flere AT-vinduer, medføre lik strøm i PL og NL. Det vil være det samm som å si at det overføres effekt tofset.
I praksis vil problemet være størst i Oslo-området der trafikken i deler av døgnet er svært stor. Det som også kompliserer forholdene er stor effekt i transitt, altså effekt som overføres mellom matestrekninger og forbi koblingshus og matestasjoner. Metoden som det her bygges på forutsetter at det foreligger en trafikksimulering der aktiv og reaktiv effekt, samt spenning, er kjent for innmatepunktene til strekningen som skal analyseres. Det fokuseres på korte strekninger, da det først og fremst vil være korte strekninger i Oslo-området der stor trafikk og stor strømbelastning kan kreve egne analyser.
Første del av artikkelen handler om strømflyten i AT-system med få AT-vinduer. Dette brukes for å finne spesielle korreksjonsfaktorer. Deretter utledes formler for å beregne strømflyt, blant annet basert på korreksjonsfaktorer.
Strømflyt i AT-system på kort matestrekning med tog i alle AT-vinduer
For tilfelle med en last i hvert AT-vindu kan ikke beregningene utført av Varju gi noe direkte svar på strømfordelingen. Tilfellet vil være interessant fordi det kan fortelle om strømfordelingen med stor togtrafikk og jevn fordeling av togene på hele matestrekningen. En tar her utgangspunkt i beregningene utført av Varju for en last som suksessivt flyttes fra midten av hvert AT-vindu, se appendiks. Alle bildene her kan gjennfinnes i appendiks.
Strømflyt i AT-system med tre AT-vinduer
For å finne strømmen som flyter i AT-lederne på en matestrekning med tre AT-vinduer undersøkes benyttes figuren under og en metodikk basert på superposisjonsteoremet. Først hentes det ut figurer for togplassering og strøm i midt i hvert AT-vindu fra appendiks. Togene byttes ut med strømkilder som trekker strøm tilsvarende togene. Summen av strømmene til de tre lastene finnes av superposisjonsteoremet som sier at: Den totale strømmen i en hvilken som helst del av en lineær krets tilsvarer den algebraiske summen av strømmer gitt av strømkilde hver for seg. For å bestemme summen av separate strømmer, erstattes alle andre spenningskilder med en kortslutning og alle andre strømkilder med åpne kretser. Dermed fås summen som er vist i det nederste linjediagrammet.
Strømflyt i AT-system med to AT-vinduer
For anslag av strømfordelingen med last midt på hvert av AT-vinduene, tas det utgangspunkt i tilfellet med én last midt mellom AT-en på en strekning med to AT-vinduene (se appendiks). Det forventes at på en så kort strekning som dette vil begge spenningskildene bidra nokså mye, anslagsvis med fordelingen ⅔ og ⅓ fra spenningskildene henholdsvis til venstre og høyre. I det nederste linjediagrammet er strømmene summert algebraisk. Som en kan se er strømfordelingen for AT-lederne ved spenningskildene 74 % i PL og 26 % i NL.
Strømflyt i AT-system med ett AT-vindu
I figuren er det vsit strømfordelingen for en matestrekning bestående kun av ett AT-vindu, se appendiks for forklaring.
Beregning av strøm i AT-ledere og autotransformatorer i trafikksimuleringer
For tog som trekker 1000 A og beveger seg mellom to spenningskilder på en matestrekning med tre, to eller ett AT-vindu, vil strømmen fordele seg nokså ulikt mellom AT-lederne, se appendiks. Dette i motsetning til en matestrekning med mange AT-vinduer der strømmen blir jevnere. Tre ting gjør at representasjonen i kapitlene over er en sterk forenkling:
- Spenningskildene er ingen realistisk representasjon av virkelgie omformerstasjoner. I virkeligheten vil blant annet antall omformere i drift, indre impedans og spenningsregulatorer spiller inn.
- Togene trekke stor strøm visse steder (hastighetsøkning), mens de andre steder trekker de moderat (jevn hastighet, liten stigning og rulling) eller ingen strøm (rulling med liten fall) eller mater inn strøm (regenerativ bremsing i fall).
- Strømfordeling for effekt i transitt er ikke undersøkt, men en del effekt vil overføres på en matestrekning til den neste. Denne effekten fordeler seg likt mellom AT-lederne.
For de aktuelle strekningene som en ser på her vil det være stasjoner ved hver av autotransformatorene. Togene kjører ut av stasjonene og akselererer opp i hastighet rett utenfor stasjonene. Det kan derfor godt tenkes stort strømforbruk før togene kommer midt mellom autotransformatorene. Effektfordeling mellom omformerstasjonene som har sammenheng med første kulepunkt blir inkludert i modellene for trafikksimuleringene og vil være gitt i resultatene.
Strøm gjennom autotransformatorene i trafikksimuleringer
Tabellen under viser korreksjonsfaktorer kPL for å ta hensyn til usymmetrisk belastning av AT-ledere med en matestrekning bestående av ett, to eller tre AT-vinduer:
Leder | Tre AT-vinduer | To AT-vinduer | Ett AT-vindu |
---|---|---|---|
Strøm i NL | 515/1500 → 0,34 | 260/1000 → 0,26 | 0/500 →0,0 |
Strøm i PL (kPL) | 985/1500 → 0,66 | 740/1000 → 0,74 | 500/500 →1,0 |
Generelt for en kort matestrekning mellom to omformerstasjoner, eller som her også med delvis AT-system og BT-system, og et tilfeldig antall tog som trekker tilfeldig effekt, som i figur 92, kan en ikke forutsette at strømmen hele tiden fordeler seg mellom AT-lederne som korreksjonsfaktorene i Tabell 1. Om det ikke er tog i det grå området, altså delstrekningen med AT-system i figur 92, og alle tog som trekker effekt er bortenfor, vil AT-lederne belastes tilnærmet helt symmetrisk (korreksjonsfaktor 1,0).
Fra simuleringsprogrammene μPAS eller TPSS kan en kun få verdiene for aktiv- og reaktiv effekt som går over en linje (med fortegn), samt spenning og strøm. Alle verdiene som fås fra μPAS er referert 15 kV-nivå. Strømmen som går forbi det grå feltet i figur 92 kalles her for transittstrøm (og transitteffekt), og er gitt av sammenhengen:
- Feil i matematikken (Konverteringsfeil. Tjeneren («cli») rapporterte: «SyntaxError: Expected "-", "[", "\\", "\\begin", "\\begin{", "]", "^", "_", "{", "}", [ \t\n\r], [%$], [().], [,:;?!'], [/|], [0-9], [><~], [\-+*=], or [a-zA-Z] but "–" found.in 1:87»): {\displaystyle I_{PLT} = I_{NLT}= \frac {1}{2} \cdot \frac {1}{2} \cdot |\mathbf{I_1}–\mathbf{I_2}| }
med positive verdier i pilenes retning i figuren. Uthevede symboler betyr fasevektorer (komplekse tall) og alle strømmer er referert 15 kV-nivå. En multipliserer med ½ for å ta hensyn til at strømmen halveres på grunn av doblet spenningsnivå og for at summen av strøm inn på strekningen fordeles på lederne. Se for eksempel figur 84 der det går 360 A i hver av faselederne i AT-vinduet til høyre uten tog referert 15 kV-nivå. Reell strøm (referert 30 kV) for PL og NL er 180 A og med de retningene på pilene og fortegnene som er brukt, vil differansen bli 720 A, altså fire ganger større strøm enn det som går i PL og NL (180 A).
Strømmen i PL som tog komsumerer på strekningen:
Der en multipliserer med ½ for at summen av strøm inn på strekningen fordeles på lederne. Se igjen på figuen dendefor der strøm referert 15 kV-nivå i PL for strøm til toget i venstre AT-vindu er henholdsvis 560 A og 440 A. Med retningen på piler og fortegnsvalg som er gjort må altså summen halveres for at det skal bli riktig strøm i hver av lederne. I tillegg må korrigeringsfaktorene kPL anvendes for å ta hensyn til asymmetrisk strømfordeling med få AT-vinduer. Legg også merke til at formelen ikke forteller nøyaktig hvilken strøm som går i lederne, bare hva som er gjennomsnittlig strøm.
For å finne strømmene I1 og I2 benyttes sammenhengen:
Her defineres fasevinkelen til spenningen som referanse og settes til 0°. Det innebærer at fasevinkelforskjellen for spenningen over denne korte strekningen tilnærmes til å være 0. Videre kan en sette for hver av strømmene I1 og I2:
Dermed kan en finne strømmen som går i PL ved 1 ved å sette inn for togstrøm og transittstrøm (IPLT + IPLtog):
og ved 2:
Her er det første leddet (differansen) strømkomponenten som overføres forbi AT-vinduet(ene), altså transittstrøm, og det andre leddet er strøm som togene på strekningen forbruker, kalt togstrøm.
Betingelsen for sammenhengen er at matestrekningen er kort, anslagsvis mindre enn fem AT-vinduer.
Strøm gjennom autotransformatorene i trafikksimuleringer
Ut fra det en har sett over angående belastning av autotransformatorene vil de belastes lavt på grunn av den store andelen effektoverføring kun 15 kV-nivå og få AT-vinduer. Imidlertid vil ikke autotransformatorene bli ubelastet om det bare er ett AT-vindu, for selv da er det effekt på 30 kV-nivå som skal overføres (i transitt).
Strømfordelingen vist i figur 84 benyttes, der strømmen inn til autotransformatoren til høyre er gitt direkte av strømmen som mates inn på strekningen. For å finne denne strømmen brukes leddet overfor for strøm i transitt. Derimot er ikke dette tilfelle for belastningen av autotransformatoren til venstre, den belastes ikke for strøm til toget, men for strøm til autotransformatoren i midten. Imidlertid skal det her forutsettes flere tog jevnt fordelt på matestrekingen. Dermed er det strømfordelingen i tilfellene vist i figur 82, figur 87 og figur 88 som er interessant. Belastningen av autotransformatorer ved overgangen til det grå området i figur 92 kan skrives slik:
Der en tar hensyn til antall AT-vinduer ved å ta med faktoren kAT som har verdier gitt av tabellen nedenfor. Verdiene i tabellen er hentet fra figur 82, figur 87 og figur 88 som viser belastningen av autotransformatorene med tog jevnt fordelt på matestrekningen
Tre AT-vinduer | To AT-vinduer | Ett AT-vindu | |
---|---|---|---|
Strøm i AT (kAT) | 1030/1500 → 0,69 | 520/1000 → 0,52 | 0/500 →0,0 |
Belastningen av hver autotransformator ute på matestrekningen finnes som summen av strømmen inn på matestrekningen dividert på antall steder med autotransformator. Da kan en regne med at autotransformatoren på midten gjennomsnittlig belastes minst med så stor strøm.
Tre AT-vinduer | To AT-vinduer | Ett AT-vindu | |
---|---|---|---|
Strøm i midt AT (kmidt AT) | 1030/3000 → 0,3433 | 520/1000 → 0,52 | – |
En formel for strømmen som fordeler seg på autotransformatorene midt på strekningen kan settes opp slik:
Der kmidt AT er korrigeringsfaktoren autotransformatorer på matestrekningen gitt av verdiene i tabell 3 og de andre symbolene er de samme som lengre opp. I et tilfelle med flere enn tre AT-vinduer antas det at korrigeringsfaktoren kmidt AT kan erstattes slik, der n er antall autotransformatorer:
For strøm gjennom autotransformatorer tilknyttet et topolet samleskinneanlegg (koblingshus), må en finne strømmen som mates ut på 15 kV-nivå til tilstøtende matestrekninger. Om matestrekningene tilknyttet samleskinneanlegget er lange, autotransformatorene plassert med lik avstand og med jevnt fordelt effektuttak, kan en anta lik belastning for alle auto-transformatorene. Men om disse forutsetningene ikke er til stede kan bruk av tommel-fingerregler gi feil, for eksempel ved at mer effekt enn vanlig omsettes på 15 kV-nivå og belaster autotransformatorene tilknyttet samleskinnen mye.
Om en kan finne strømmen som går inn til samleskinneanleggets forsyningsområde, markert med gråt i figur 93, vil den delen som er togstrømmen belaste autotransformatoren tilknyttet samleskinneanlegget:
Det grå området kan ha en utstrekning til nærmeste autotransformator i hver retning ut fra koblingshuset, og denne utstrekningen vil påvirke korrigeringsfaktoren kkhAT.
Problemet her er at en ikke har noen sikre beregninger for hvor stor korrigeringsfaktoren kkhAT egentlig skal være. En annen utfordring er å finne strømmer inn mot forsyningsområde til et koblingshus. For Drammen eller Asker koblingshus har en ikke definert linjer i simuleringsmodellene der P, Q, I og U kan avleses der nærmeste autotransformator i hver retning skal stå (det grå arealet i figur 93).
En annen tilnærming er å si at all effekt inn til mateområdet fra omformerstasjonene til koblingsanlegget fordeler seg likt på alle autotransformatorene. Altså at det grå området i figuren over strekes ut mot alle de tre omformerne. Da forutsettes autotransformatoren i koblingshuset å bli belastet likt som alle de andre enhetene.