Sandkasse/Frank/Dimensjonering-AT
Innledning
Beregning av strømflyt, termisk belastning og dimensjonering av seriekomponenter i autotransformatorsystem (AT-system) med svært stor belastning kan være utfordrende, fordi strømflyten i lederne ikke er symetrisk. For eksempel vil det på en bane med AT-system (elektrisk utforming E) og stor togtrafikk gå mer strøm i positivleder (PL) enn i negativleder (NL). Om en har elektrisk utforming F vil det gå mer størm i kontaktledningen (KL). Artikkelen her fokuserer på elektrisk utforming E.
Med stor togtrafikk menes at det på en matestrekning går så mange tog at det for det meste av tiden vil være ett eller flere tog mellom hver autotransformator (AT), eller AT-vindu. Da vil det være mye strøm som overføres enfaset (eller 15 kV-nivå) og mindre tofaset (eller på 30 kV-nivå). Desto større trafikk desto større blir denne tendensen. Motsatt vil større effekt i transitt, altså effekt som overføres fra en matestrekning til en annen eller forbi ett eller flere AT-vinduer, medføre lik strøm i PL og NL. Det vil være det samm som å si at det overføres effekt tofset.
I praksis vil problemet være størst i Oslo-området der trafikken i deler av døgnet er svært stor. Det som også kompliserer forholdene er stor effekt i transitt, altså effekt som overføres mellom matestrekninger og forbi koblingshus og matestasjoner. Metoden som det her bygges på forutsetter at det foreligger en trafikksimulering der aktiv og reaktiv effekt, samt spenning, er kjent for innmatepunktene til strekningen som skal analyseres. Det fokuseres på korte strekninger, da det først og fremst vil være korte strekninger i Oslo-området der stor trafikk og stor strømbelastning kan kreve egne analyser.
Første del av artikkelen handler om strømflyten i AT-system med få AT-vinduer. Dette brukes for å finne spesielle korreksjonsfaktorer. Deretter utledes formler for å beregne strømflyt, blant annet basert på korreksjonsfaktorer.
Idealisert undersøkelse av strømflyt i AT-edere
For å undersøke strømflyten i et AT-system med svært kort avstand mellom innmatingene (og få AT-vinduer), er det gjort noen vurderinger basert på beregninger utført av Varju i 2005.[1] De prinsipielle undersøkelsene som er gjort i studien fra 2005 gjelder en matestrekning på 84 km matet av stive spenningskilder i hver ende. Det er 12 km mellom hver autotransformator og seksjonert kontaktledning (elektrisk utforming E). Strømflyten i negativ- (NL) og positivleder (PL) er vist som en animasjon der en kan forflytte en last (tog) som trekker konstant 500 A og se strømmen i lederne. Ut fra beregningene kan en se at:
- Fordeling av strømmen mellom lederne ikke vil være symmetrisk mellom NL og PL i det AT-vinduet der et tog befinner seg.
- I tilstøtende AT-vinduer til der toget befinner seg vil strømmene være tilnærmet symmetriske.
- Begge autotransformatorer for et AT-vindu med last vil transformere strøm.
- Når lasten står rett ved en autotransformator, vil denne transformere nesten all strøm lasten trekker. Naboenhetene i hver retning bidrar noe, rundt en tidel hver.
- Når et tog er nært en omformerstasjon går det ikke strøm i AT-lederne og ikke noe strøm overføres fra tilstøtende omformerstasjoner (forutsetter stive spenningskilder).
Fordelingen av strøm mellom AT-lederne vil generelt være bestemt av ledernes og autotransformatorenes impedans.
Strømflyt i AT-system med tre AT-vinduer
Nedenfor viser figur 77 til figur 81 strømmen som flyter i lederne basert på beregningene utført av Varju (3), samt antagelser for en matestrekning som er 30 km istedenfor 84 km. Tallene i sort er hentet ut fra beregningen av Varju. Her er det forutsatt at toget trekker 1000 A (alle verdiene fra Varjus beregninger er doblet). I tilfellet der toget er midt på strekningen som i figur 77 ser en at strømmen er likt fordelt mellom PL og NL. Det tilsvarer omtrent strømflyten beregnet av Varju for tilfellet der toget er ved km 42. Videre vises strømmens komponenter på 15- og 30 kV-nivå med henholdsvis røde og blå piler. I dette tilfelle skjer all effektoverføring fra spenningskildene på 30 kV og kun autotransformatoren rett ved toget omsetter strøm til toget på 15 kV-nivå. Det ville vært riktig om impedansen i autotransformatorene var null, men siden det ikke er tilfelle og matestrekningen ikke er spesielt lang, vil noe strøm komme fra tilstøtende spenningskilder på 15 kV-nivå. Denne strømmen er såpass liten, anslagsvis noen få amper, at den sees bort fra her.
Referanser
- ↑ Varju, György: EMC STUDY FOR ATPLNL SYSTEM IN NORWAY. Budapest, (November, 2005).