Sporstoppere
__NUMBEREDHEADINGS__
Innledning
7 - skrive/skanne 8 - hente fra trv 10 - skrive/skanne Dimensjonering 10.2 - eksempel Dalane (med) 10.3 - eksempel Kristiansand (med?)
Inneholder en beskrivelse av komponenter som inngår i sikringen av buttspor på stasjonsområder.
Sporstoppere
Fig 1: Bildet viser en sporstopper i Kristiansand,som er festet rett på en betongvegg. Den befinner seg på den delen av stasjonen som er lite i bruk. Bildet er tatt med eget kamera. Fig 2: Bildet viser enkel, glidende sporstopper (Jernbane.net, 2012). Fig 3: Bildet er av en hydraulisk sporstopper med en stor bufferprodusert av RAWIE 2 (Rawie, 2012b). Fig 5: Bildet viser sporstopperen festet til en togskinnene. Bildet er hentet fra vedleggE. Fig 4: Tegningen viser de ytre kreftene ved støt på en glidende sporstopper med buffer. Sporstopperens formål er....
Det finnes i dag mange ulike sporstoppere, der vi skiller mellom 3 ulike grunnkonstruksjoner:
- Faste sporstoppere; disse kan ikke flytte seg og ved påkjørsel skjer stoppet tilnærmet momentant. Disse blir det brukt lite av i dag, unntak er de som har stått siden før dimensjoneringskravene kom, eller der det ikke er noen plass til bremsevei bak.
- Glidende sporstoppere; disse forflytter seg ved påkjørsel. Bremsearbeidet tilsvarer friksjonen mellom stopper og skinne, samt bremseveien.
- Sporstoppere med hydrauliske buffere; ved påkjørsel tar bufferen opp bremsearbeidet. Sporstoppere med hydrauliske buffere kan også monteres som glidbar sporstopper hvor bremsearbeidet blir tatt opp, dels av de hydrauliske bufferne og dels av forskyvning langs sporet.
Nå brukes det som oftest glidende sporstopper med buffere der det er plass til det, ettersom støtet da blir elastisk.
Som pilene viser på bildet over, gjør friksjonen den største motkraften i de fleste tilfeller. Buffermotstanden holdes konstant, mens summen av friksjonskreftene går parallelt med kraften fra toget. Ved små hastigheter kan bufferne ta opp større deler av bevegelsesenergien til toget, enn friksjonen.
De glidbare stoppbukkene er festet på skinnene, slik at friksjonen virker inn fra tre forskjellige steder. Vil man ha større friksjon kan man stramme inn skruene, slik at foten til sporstopperen klemmer hardere om skinnene. Men om man strammer for hardt begynner ikke sporstopperen å gli, og sannsynligvis blir sporstopperen ødelagt, hvis ikke det blir en bråstopp. Men har den først begynt å gli, kommer den ikke til å bli stoppet, ettersom hvilefriksjonen er dobbelt så stor som den bevegelige friksjonen, erfaringsmessig sett. (Veritas, 1997,vedlegg A)
Sporsperre
Sporsperrer plasseres som oftest ved utkjøring av hensettingsspor og skal hindre utilsiktet bevegelse ut fra sporet.
Januar 2010 reiste en vognstamme fra Alnabru og fortsatte ferden ned mot OsloS,toget ble ledet ned mot Sjursøya3 og endte sine dager der. l henhold til SHvar det mange faktorer som førte til ulykken. Det var både menneskelige og maskinelle feil. En av feilene som ble avdekket var at den installerte sporsperren på Alnabru stasjon ikke var i drift. Den var utdatert og fungerte derfor ikke på det gitte tidspunkt (SHT, 2011). l etterkant av denne ulykken er det montert sporsperrer i det aktuelle området.
Bilde 8 Bildet er av en sporsperre,det er hentet hos jernbaneverket med tillatelse til å bruke i oppgaven.
Sporsperrene utformes slik at de alltid står i"lukket" posisjon. Når et tog kommer,åpner denne seg og toget triller forbi. Når toget har kjørt forbi lukkes sperren igjen. Disse er styrt automatisk via kontaktledningsnettet og ATC5. Det kan oppstå problemer i forhold til dette, men disse gis til å være små,og derfor nesten neglisjerbart. Ofte kan disse også styres manuelt. En sporsperre egner seg ikke på vanlige togspor der hastighetene er store,men derimot veldig bra på hensettingspor, skiftespor og inne på stasjoner.
Avsporingsveksel
En avsporingsveksel, er i hovedsak en vanlig sporveksel. Forskjellen mellom disse to er at det ene sporet på en avsporingsveksel ikke fører til en destinasjon eller et nytt spor. Sporet går istedenfor noen meter vekk fra hovedspor og fører ut mot et område som er avsatt til dette formålet. Området kan gjerne være en grushaug,betongvegg eller parkeringsplass. Det viktigste er at toget ledes bort fra hovedsporet og stoppes effektivt. Der fallet er stort er dette en bra løsning med tanke på løpske tog/togsett. Problemet med denne måten er at skadene på togsettet er store, og dermed er også muligheter for eventuelle passasjerskader store.
Disse settes som oftest inn mot stasjoner, men også ut fra stasjoner som ligger på en ås eller har fall ut. Disse blir brukt som sikkerhet dersom det skal komme løpske tog eller vogner.
l etterkant av ulykken på Sjursøya er det montert avsporingsveksel på strekningen Alnabru OsloS. Utformingen av denne er som nevnt ovenfor, der avsporingsvekselen leder mot en grushaug ved siden av sporet.
Baliser
En balise er en elektronisk enhet som settes mellom sporene som automatisk gir beskjed om at noe skjer, beskjeden gis til eventuelt rullende materiell. Vi har fokusert på hastighetsbaliser i denne oppgaven. En hastighetsbalise settes ofte inn mot stasjoner for å være sikker på at farten nedjusteres. Denne kobles inn mot bremsene på lokomotivet. Dette fungerer også via ATC. Disse kan også brukes de, telehiv har gjort sporene så vanskelig å kjøre på at man ikke kan kjøre ved normale hastigheter. Baliser er mye brukt og kan ikke erstatte sporstoppere, sporsperrer og sporavvekslere.
Bilde 9. Bildet er tatt ved spor 19 med eget kamera, med tillatelse fra jernbaneverket.
En balise plasseres midt mellom to spor og festes til svillene. Baliser kommuniserer med toget når det kjører forbi. Det er viktig at en balise monteres midt mellom to skinner, med en feilmargin på 20 mm. Baliser brukes også mye når et tog kommer mot et område med mye svinger, der fare for velt er tilstede. Baliser er et viktig verktøy i dagens jernbane,dette for å ha mulighet for å overstyre togene,og fjerne de menneskelige feilene.
Et eksempel rundt dette med nødvendigheten av hastighetsbaliser, er når tog 12926 6 kjørte ut ved Nykirke på Vestfoldsbanen. Toget kjørte ien hastighet som i ettertid er bestemt til å være 135 km/ti en 70 sone. Det var på bakgrunn av denne store hastigheten at toget sporet av, og som førte til store materielle skader. Fartsgrensen der toget sporet av var 70 km/t, og fartsendringen skulle skjedd rett i forkant av ulykkesområdet. Dersom det hadde vært satt inn en hastighetsbalise i forkant, som hadde en satt fartsgrense,kunne ulykken vært unngått. SHT har ikke kommet med sin endelige rapport fra ulykken,derfor er opplysningene hentet fra den foreløpige rapporten (SHT, 2012). l henhold til den rapporten er det konkludert med menneskelig feil.
Ulykker
Nasjonalt
Internasjonalt
Regelverk rundt sporstoppere
Formål og krav
Sporstopperen skal bremse opp rullende materiell ved sporets ende. Sporstopperen skal fungere slik at rullende materiell ikke blir skadet ved påkjøring. Sporstopperen skal dessuten beskytte mennesker, bygninger og installasjoner.
Konstruksjon
Vi skiller mellom 3 ulike grunnkonstruksjoner av sporstoppere:
- fast sporstopper
- glidende sporstopper
- sporstopper med hydrauliske buffere
Sporstoppere for persontog skal både kunne ta opp krefter fra sidebuffere og fra sentralkoppelet
Fast sporstopper
Faste sporstoppere kan ikke forskyves langs sporet. Ved påkjørsel stopper det rullende materiell tilnærmet momentant. Faste sporstoppere finnes som både betong- og stålkonstruksjoner.
Glidende sporstopper
Glidbare sporstoppere kan forskyves langs sporet. Ved påkjørsel bremses toget ved at sporstopperen utretter et bremsearbeid når den forskyves langs sporet. Bremsearbeidet er avhengig av friksjonen i bremseelementene og bremsestrekningens lengde.
Bremseelementene er forbundet med skrueforbindelser. Bremsekraften bestemmes av tiltrekkingsmoment og forspenningskraft i skrueforbindelsene.
Sporstopper med hydrauliske buffere
I denne typen sporstoppere opptar hydrauliske buffere bremsearbeidet ved påkjørsel. Sporstopper med hydrauliske buffere kan også monteres som glidbar sporstopper hvor bremsearbeidet blir tatt opp dels av de hydrauliske bufferene og dels av forskyvning langs sporet.
Valg av sporstopper
Sporstopper skal dimensjoneres slik at den kan ta opp bevegelsesenergien fra rullende materiell med dimensjonerende togvekt og hastighet for det aktuelle sporet uten at det rullende materiell eller bakenforliggende konstruksjoner blir skadet.
Dimensjonerende parametere
Hastighet
Nedenstående hastigheter gjelder ved dimensjonering av sporstoppere
- togspor: 15 km/h
- skiftespor: 10 km/h
På steder hvor sporet har fall før sporstopperen skal dimensjonerende hastighet velges lik den hastighet løpske vogner eller tog uten virksomme bremser kan oppnå ved påkjøring av sporstopper, dersom denne er høyere enn hastighetene nevnt ovenfor.
Togvekt
Sporstoppere skal dimensjoneres for den maksimale togvekt som kan forventes å trafikkere sporet.
Maksimal reaksjonskraft
For å unngå skade på det rullende materiell ved sammenstøt, skal reaksjonskraft fra sporstopper begrenses til maks. 1500 kN.
Akselerasjon
For å unngå skade på passasjerer ved sammenstøt skal sporstopperen dimensjoneres slik at avbremsingsakselerasjonen for de letteste togsettene ikke overstiger 10 m/s2.
Sporstandard
Ved sporstoppere som festes til skinnene, er det viktig at sporet er i stand til å ta opp langsgående krefter ved sammenstøt. Det stilles følgende krav til sporkonstruksjonen:
- skinneprofil skal være 49E1 eller større
- det tillates ingen sveiste eller laskede skjøter i sporstopperens glidestrekning
- sporet skal være helsveist i min. 40 m eller mot nærmeste sporveksel foran sporstopperen
- befestigelsen skal være av fjærende type
- det tillates ingen isolerte skjøter nærmere enn 2 m fra sporstopperen
Ved dimensjonerende togvekt over 200 tonn skal sporet forsterkes med 2 skinnestrenger som festes innenfor kjøreskinnene. Skinnene festes med svilleskruer til tresviller eller med Pandrol-fjærer til brusviller av betong. Sporet skal forsterkes i hele sporstopperens glidestrekning samt min. 2 m foran sporstopperen.
Resultater
Dimensjonering av sporstopper
Rullende tog 5 km/t
Toghastighet: (5:3,6) | 1,40 m/s |
Massen av tog: | 400.000 kg |
Bevegelsesenergi til tog (Ek=0,5*m*v2) | =392 kNm |
Restenergi som må tas av sporstopper | =392-600kNm < 0 kNm |
Ikke glidbar sporstopper
(Ek=0,5*m*v2) |
Ek-(1560-150)kNm = 0 kNm |
Ek = 1560-150 kNm = 1710 kNm |
gir:
Ek = 0,5*400 000 kg*(2m/s)2 = 800 kNm
Godstog 15 km/t
(Ek=0,5*m*v2)