Elektrisk systembeskrivelse av kontaktledningsanlegg ver01: Forskjell mellom sideversjoner

Fra Lærebøker i jernbaneteknikk
Hopp til navigering Hopp til søk
Ingen redigeringsforklaring
Ingen redigeringsforklaring
Linje 101: Linje 101:
<math> I = - A \cdot \tfrac{1}{Z_0} \cdot e^{\gamma x} + B \cdot \tfrac{1}{Z_0} \cdot e^{-\gamma x} </math>
<math> I = - A \cdot \tfrac{1}{Z_0} \cdot e^{\gamma x} + B \cdot \tfrac{1}{Z_0} \cdot e^{-\gamma x} </math>


Tallverdiene for konstantene A og B er gitt av grenseverdibetingelser.
Tallverdiene for konstantene A og B er gitt av randverdibetingelser.


== Grenseverdier og impedanser ==
== Randverdibetingelser: Beregning av admittanser og impedanser ==


= Referanser =
= Referanser =
[1] Edwards, Penney: ''Elementary Linear Algebra'', Pearson, 1987. ISBN 9780132582605.
[1] Edwards, Penney: ''Elementary Linear Algebra'', Pearson, 1987. ISBN 9780132582605.

Sideversjonen fra 2. feb. 2017 kl. 00:09

__NUMBEREDHEADINGS__

Generelt

Kontaktledningsanlegget overfører effekt mellom matestasjonen og traksjonsmateriell og andre belastninger tilknyttet kontaktledningen. I eldre anlegg skjer overføringen i kontaktledning ved 15 kV nominell spenning, med retur i kjøreskinner ved 0 kV. I nyere anlegg er det innført returledere eller AT-system med positivleder og negativleder. Følgende ledere vil bli omtalt videre i dette kapittelet:

<figtable id="tab:Ledere_oversikt">

Ledere oversikt
Leder Forklaring Nominell spenning
KL Kontaktledningsanlegg, omfatter kontakttråd og bæreline 15 kV
RR Kjøreskinner 0 kV
RL Returleder 0 kV
FSL Forsterkningsleder 15 kV
PL Positivleder (for AT-system) normalt + 15 kV
NL Negativleder (for AT-system) normalt - 15 kV

</figtable>

I dette kapittelet vil det bli beskrevet en matematisk modell som beskriver hvordan strøm og spenning fordeler seg mellom ulike ledere i et slikt flerledersystem som et kontaktledningsanlegg utgjør. En slik modell kan brukes til å beregne:

  • impedansen mellom matestasjon og belastning i kontaktledningssystemet,
  • potensial i returkretsen,
  • indusert spenning i ledere som går parallelt med jernbanetraseen,
  • belastning på enkeltledere og komponenter i kontaktledningsnettet.

Enkel transmisjonslinje

Introduksjon

Den enkleste formen for problemet er ei enkelt linjesløyfe. Det finnes mye teori som beskriver problemet, og problemet har kjent analytisk løsning. Det tas i de følgende avsnitt likevel en rask gjennomgang av den grunnleggende teorien, fordi den samme framgangsmåten benyttes for analyse av et flerledersystem.

Telegraflikningene

En kontaktledning med retur i kjøreskinner kan forenklet betraktes på denne måten, hvis man ser bort fra lekkasje til jordsmonn. Telegraflikningen tar utgangspunkt i et svært kort linjesegment dx av linjesløyfa. Linjesegmentet har en seriell resistans R · dx og reaktans X · dx, og en parallell konduktans G · dx og susceptans B · dx.

<figure id="fig:Telegraflikningene">

Telegraflikningen.png

Telegraflikningene: Kretsskjema for et linjesegment dx </figure> Parametrene kan skrives om om slik at impedansen blir og admittansen blir Det serielle spenningsfallet dU over dette linjesegmentet er gitt av Ohms lov: (i) Strømmen som lekker gjennom admittansen utgjør forskjellen i strøm over linjesegmentet. Denne strømmen er proporsjonal med spenningen: (ii) Likningene (i) og (ii) danner et koplet likningssett som i litteraturen kalles for telegraflikningene. Likningssettet kan ordnes med matriserepresentasjon på følgende måte: Løsningen på et slikt likningssett er beskrivet i flere lærebøker i lineæralgebra, for eksempel i Referanse [1]. En rask innføring er gitt i Wikipedia. Egenverdiene til systemet er: der er linjens transmisjonskonstant. De tilhørende egenvektorene kan finnes til å være: der er linjens karakteristiske impedans. Transmisjonskonstanten er en kompleks størrelse og et mål på hvordan en strøm/spenning dempes og forandrer fase langs en transmisjonslinje. Den karakteristiske impedansen er et mål på sammenhengen mellom strøm og spenning i en transmisjonslinje. Løsningen er gitt av følgende uttrykk: Tallverdiene for konstantene A og B er gitt av randverdibetingelser.

Randverdibetingelser: Beregning av admittanser og impedanser

Referanser

[1] Edwards, Penney: Elementary Linear Algebra, Pearson, 1987. ISBN 9780132582605.