Kriterier for valg av tunnelkonsept: Forskjell mellom sideversjoner

Fra Lærebøker i jernbaneteknikk
Hopp til navigering Hopp til søk
Linje 193: Linje 193:
| 16||Fukushima ||11,7 ||D ||1982 ||  
| 16||Fukushima ||11,7 ||D ||1982 ||  
|-
|-
| 17|| || || || ||  
| 17||Kubiki ||11,4 ||D ||1969 ||  
|-
|-
| 18|| || || || ||  
| 18||Shiozawa ||11,2 ||D ||1982 ||  
|-
|-
| 19|| || || || ||  
| 19||Akakura ||10,5 ||E ||1997 ||
|-
| 20||Ikuta ||10,4 ||D ||1976 ||
|-
| 21||Daisan-shibisan ||10 ||D ||2004 ||  


|}
|}

Sideversjonen fra 23. mai 2012 kl. 08:12

Aktuelle tunnelkonsepter

Følgende prinsipielle tunnelkonsept benyttes for dobbeltsporede jernbanestrekninger:

  • Ett stort dobbeltsporet løp med rømningsveier til det fri eller annet sikkert sted for minimum hver 1000 m.
  • Ett stort dobbeltsporet løp med parallell service-/rømningstunnel med tverrforbindelse for rømning for minimum hver 1000 m.
  • To separate enkeltsporede løp med tverrforbindelse mellom disse for hver 500 m.
  • To separate enkeltsporede løp med servicetunnel forbundet med rømningsveier mellom tunnelene.

Dette er de samme tunnelkonseptene som omfattes av TSI SRT.

Vurdering av tunnelkonseptene

Ettløpstunnel vs. toløpstunnel

Fordeler med ettløpstunneler

  • færre arbeidsfronter
  • mindre masser som må fjernes
  • mindre bergoverflateareal for sikring
  • større tverrsnitt gir mindre laster på konstruksjonene
  • enklere å etablere overkjøringssløyfer
  • enklere håndtering av trykkutjevning
  • mindre utstyr som må vedlikeholdes
  • mulighet for å plassere teknisk utstyr i rømningstunneler som ikke krever sportilgang ved vedlikehold

Fordeler med toløpstunneler

  • kortere rømningsveier
  • full kapasitet i ett løp ved vedlikehold i det andre løpet

Dette tilsier valg av ettløpstunneler for kortere tunneler, mens toløpstunneler blir mest gunstig for lange tunneler, spesielt der hvor det er langt fra tunnel ut i dagen.

Erfaringer fra andre land

Tabellene nedenfor viser for hvert land jernbanetunneler over 10 km både i drift og under bygging.

Tabellforklaring:

  • E = enkeltspor, 2E = 2 parallelle enkeltsporede tunneler, D = dobbelspor i ett tunnelløp, +s = separat service- og redningstunnel
  • TBM = tunnelen er bygget vha. tunnelboremaskin, konv. = tunnelen er drevet med konvesjonell metode (sprenging)

Sveits

No. Navn Lengde (km) Konsept Åpningsår Kommentar
1 Gotthard baseline 57 2E 2017 TBM
2 Lotschberg base tunnel 34,6 E/2E 2007 TBM/Konv.
3 Vereina 19 E/D 1999 Enkeltspor
4 Furka base tunnel 15,4 E 1982 Enkeltspor
5 Ceneri basistunnel 15,4 2E 2019 TBM
6 St.Gotthard 15 D 1882
7 Lotschberg 14,6 D 1913

Sveits har ingen klar strategi for valg av tunnelkonsept, og valg av løsning gjøres for hvert enkelt prosjekt avhengig av trafikktetthet, lengde og bergforhold. De nye lange alpetunnelene Gotthard og Lotschberg bygges imidlertid som enkeltsporede dobbelløpende tunneler med hyppige tverrslag i avstand 300-350 m. Dobbeltsporede tunneler er det vanlige konseptet i Sveits for mange nyere tunneler på ca. 5-10 km.

Frankrike

No. Navn Lengde (km) Konsept Åpningsår Kommentar
1 Mount Cenis 54 2E 2022 TBM/Konv.
2 Frejus (Mount Cenis) 13,6 D 1871

Til tross for stor satsing på bygging av nye høyhastighetsbaner er det bygget lite nye konvensjonelle jernbanetunneler i Frankrike bortsett fra Kanaltunnelen som er omtalt under Storbritannia. De nye høyhastighetsbanene er bygget med større stigninger og fall enn i de fleste andre land. Dermed har man i stor grad unngått bruk av tunneler.

På den nye LGV Mediterrannée som ble tatt i bruk i 2001 er det totalt 12,5 km med tunneler. Disse er alle ettløpstunneler. Holdningen har imidlertid endret seg, og på linjen Perpignan-Figuerras-Gerona bygges en 8,2 km lange Perthustunnelen som to-løpstunneler.

Østerrike

No. Navn Lengde (km) Konsept Åpningsår Kommentar
1 Koralm tunnel 32,8 2E 2016 TBM
2 Wienerwald 13,4 2E/D 2008 TBM (11 km)
3 Inntal 12,7 D 1994
4 Lainzer 12,3 D/2E 2008 Cut&Cover/TBM
5 Radfeld-Wiesing 11,4 D 2010 Delvis TBM
6 Arlberg 10,6 D 1884
7 Stans-Terfens 10,6 D 2008
8 Brenner basis 55 2E 2020 TBM

De fleste jernbanetunneler i Østerrike har blitt bygget som ett-løps tunneler, og dette har vært hovedkonseptet for nye tunneler. To-løps tunneler er kun aktuelt ved tunneler > 20 km. For middels lange tunneler vurderes ett eller to løp for hvert enkelt prosjekt. Konseptvalg synes i stor grad å være bestemt av drivemtode. Det planlegges og prosjekteres følgende flere nye, lange tunneler. Disse blir alle prosjekter som ett-løpstunneler.

Tyskland

No. Navn Lengde (km) Konsept Åpningsår Kommentar
1 Landrucken 10,8 D 1988
2 Mundener 10,5 D 1991

På høyhastighetsbanen Neubaustrecken er det flere tunneler opp mot 10 km. Disse tunnelene er ett-løps tunneler. Her er både gods- og persontrafikk. På den nye strekningen Leipzig-Erfurt-Nurnberg og andre høyhastighetsbaner som bygges for 300 km/h velges det i stor grad to separate enkeltsporede løp.

EBA (Eisenbahnbundesamt) har utarbeidet retningslinjer for utforming av jernbanetunneler. Her er det bl.a. spesifisert følgende:

  • Tunneler lengre enn 1000 m, og som skal betjene blandet gods- og persontrafikk til samme tid, skal utformes som to separate enkeltsporede tunneler.
  • I enkeltsporede tunneler hvor det ene løpet skal tjene som rømningsvei for det andre, skal tunnelløpene være farbare med vegkjøretøy.

Italia

No. Navn Lengde (km) Konsept Åpningsår Kommentar
1 Simplon I&II 19,8 2E 1906/22 Konv.
2 Appennino base tunnel 18,5 D 1934 Konv.
3 Vaglia 16,8 D+delvis s 2009 Konv.
4 Valico 16,6
5 Firenzuola 15,3 D 2009
6 Monte Santomarco 15 E 1987 Enkeltsporbane
7 Sciliar 13,2 D 1993
8 Caponero-Capoverde 13,1 D 2001
9 Peloritana 12,8 E 2001 Dobling av eksisterende linje
10 Bussoloeno 12,5 2E
11 Monterotondo 11,1
12 San Donato 11 D 1986
13 Pianoro 10,9 D 2009
14 Raticosa 10,5 D 2009
15 Sant Lucia basis 10,3 D 1977

Italia er det landet i Europa med høyest tunnelandel - hele 10 %. Strategien for nye tunneler er ett-løps tunneler.

Sverige

Sverige benytter både konseptet med ett-løps tunneler og to separate løp. Hellandsåsen (7,6 km) er to separate løp. Det samme planlegges for City-tunnelen under Malmø sentrum og for tunneler på den nye Botnialinjen. Tunneler på Grødingebanen og Trollhättan-Gøteborg er bygget som ett-løps tunneler.

Japan

No. Navn Lengde (km) Konsept Åpningsår Kommentar
1 Seikan 53,9 D+s 1988 Konv.
2 Hakkoda 26,5 D 2010 TBM
3 Iwate-Ichinohe 25,8 D 2002
4 Iiyama 22,2 D
5 DaiShimizu 22,2 D 1982
6 Shin-Kanmon 18,7 D 1975
7 Rokko 16,2 D 1972
8 Haruna 15,4 D 1982
9 Gorigamine 15,2 D 1997
10 Nakayama 14,9 D 1982
11 Hokuriku 13,9 D 1962
12 SinShimizu 13,5 E 1967 Dobling av eksisterende linje
13 Aki 13 D 1975
14 Chikushi 11,9 D 2013
15 KitaKyushu 11,8 D 1975
16 Fukushima 11,7 D 1982
17 Kubiki 11,4 D 1969
18 Shiozawa 11,2 D 1982
19 Akakura 10,5 E 1997
20 Ikuta 10,4 D 1976
21 Daisan-shibisan 10 D 2004

Kina

No. Navn Lengde (km) Konsept Åpningsår Kommentar
1
2

Spania

No. Navn Lengde (km) Konsept Åpningsår Kommentar
1
2

Storbritannia

No. Navn Lengde (km) Konsept Åpningsår Kommentar
1
2

En generell trend er at lange tunneler (> 10 km) bygges som toløpstunneler, mens kortere tunneler bygges oftere som ettløpstunneler.

Konklusjon

Veileder for valg av tunnelkonsept oppdateres. Generelt kan man gi følgende konklusjoner:

  • Tunneler opp til en lengde på 5 km bygges normalt som ettløpstunneler
  • Tunneler med en lengde fra 5 km til 15 km må vurderes for det enkelte prosjekt ut fra stedlige forhold
  • Tunneler med en lenge over 15 km bygges normalt som toløpstunneler