Tunnel/Vann- og frostsikring: Forskjell mellom sideversjoner

Fra Lærebøker i jernbaneteknikk
Hopp til navigering Hopp til søk
 
(90 mellomliggende revisjoner av samme bruker vises ikke)
Linje 1: Linje 1:
__NUMBEREDHEADINGS__
__NUMBEREDHEADINGS__
== Tunneltetting og vann- og frostsikring==
= Vann- og frostproblematikk=
=== Vannlekkasjer===
== Generelt==
==== Generelt====
Jernbanetunneler bygges normalt som drenerte konstruksjoner. Det betyr at man tillater innlekkasje av grunnvann i mengder som er akseptable for ikke å påføre overliggende natur og bebyggelse uttørking eller setninger av betydning. Tilstedeværelse av vann er imidlertid den faktoren som har størst påvirkning på levetiden for sikringsmidler, konstruksjoner og installasjoner i tunneler. Vannlekkasjer i tunnel kan medføre store utfordringer på flere områder. De kan føre til grunnvannssenkning og setninger i området rundt tunnelen, korrosjon på skinnegangen, problemer med elektriske anlegg, dannelse av vaskesviller, isdannelser i profilet og frostsprengning som fører til nedfall av stein og blokker. Bruk av forinjeksjon er som oftes ikke tilstrekkelig for å unngå fare for drypp og isdannelse, og jernbanetunneler krever i likhet med andre trafikktunneler at det utføres vann- og frostsikring for å ivareta gjeldende funksjonskrav.  
Tilstedeværelse av vann er den faktoren som har størst påvirkning på levetiden for sikringsmidler, konstruksjoner og installasjoner i tunnelen. Vannlekkasjer i tunneler kan medføre store utfordringer på flere områder. De kan føre til grunnvannssenkning og setninger i området rundt tunnelen, korrosjon på skinnegangen, problemer med elektriske anlegg, dannelse av vaskesviller, isdannelser i profilet og frostsprengning som fører til nedfall av stein og blokker.  


Jernbanetunneler bygges normalt som drenerte konstruksjoner. Det betyr at man tillater innlekkasje av grunnvann i mengder som er akseptable for ikke å påføre overliggende natur og bebyggelse uttørking eller setninger av betydning.
I områder med bebyggelse hvor grunnvannssenkning kan medføre setningsskader er det viktig å unngå for store innlekkasjer. Ved tunneldrift skjer det normalt noe endringer i grunnvannstrømningene i bakken. Ofte får ikke dette vesentlige konsekvenser på overflaten. I enkelte tilfeller kan det imidlertid oppstå problemer i form av setninger på overflaten. Dersom det ligger løsmasser over fjellet, og grunnvannsnivået i massene senkes som følge av at man ikke har oppnådd tilstrekkelig lave vannlekkasjer inn i tunnelen, kan det medføre setninger i løsmassene. Dermed vil ev. bygninger som er fundamentert på disse løsmassene kunne få skadelige setninger som følge av poretrykksreduksjonen. I områder hvor det vurderes å være fare for setninger anbefales å sette ut poretrykksmålere for å kunne følge med på eventuelle endringer i poretrykket, og dermed kunne sette inn tiltak på et tidlig tidspunkt. Tiltak vil vanligvis bestå av vanninfiltrasjon i grunnen. Som oftest vil borebrønner som senkes noen meter ned i berg virke best. Det settes inn pakning i berget og påføres et moderat vanntrykk i forhold til overflaten.


I Norge er berggrunnen generelt av en slik kvalitet at berget kan benyttes som bærende konstruksjon. I tillegg etableres det egne vann- og frostsikringskonstruksjoner som skal sikre tunnelene spesielt mot vann og is. De fleste norske jernbanetunneler er bergtunneler. Felles for mange tunneler i Europa er at grunnforholdene ofte er dårligere enn i Norge og at det er nødvendig med egne bærende konstruksjoner for å oppta kreftene fra overliggende berg- eller løsmasser. Denne konstruksjonen kan også fungere som vann- og frostsikring. Typisk er det at tunnelene bygges som fullt utstøpte konstruksjoner.
Tillatt mengde innlekkasje i tunnelen angis som liter per minutt per 100 m tunnel. Det er ingen generelle krav til tillatt mengde innlekkende vann, dette fastsettes av det enkelte tunnelprosjekt. Tiltak som bør utføres i forkant av utbyggingen for å forhindre setningsproblemer på grunn av vannlekkasjer og eventuelt fastsettelse tetthetskrav er beskrevet i kapittel [[Tunnel/Forundersøkelser|Forundersøkelser]].


I områder med bebyggelse hvor grunnvannssenkning kan medføre setningsskader er det viktig å unngå for store innlekkasjer. Normalt bør det settes opp poretrykksmålere og setningsmålere for å kunne iverksette tiltak i rett tid. Bruk av forinjeksjon er det mest brukte tiltaket mot vanninntregning i tunneler, men som oftest er dette ikke tilstrekkelig for å unngå fare for drypp og isdannelse.
For beskrivelse av forinjeksjon, se [https://nff.no/wp-content/uploads/sites/2/2020/04/Haandbok_06.pdf Nff Håndbok 06 Praktisk forinjeksjon for underjordsanlegg]


==== Tetting med injeksjon====
= Historikk vann- og frostsikring=
Kontroll og reduksjon av innlekkasje av vann i tunnelrommet skjer primært gjennom bruk av forinjeksjon tilpasset stedlige lekkasjeforhold, geologi og krav til innlekkasje. Dette kan utføres på bakgrunn av målinger fra fortløpende sonderboring, eller som et systematisk tiltak over lengre eller kortere strekningere på bakgrunn av forundersøkelser og prosjektering.
 
Etterinjeksjon benyttes kun unntaksvis, og erfaring har vist at det vanligvis oppnås bedre resultater ved forinjeksjon, og at det derfor bør benyttes i de tilfeller hvor det er valgmuligheter.
 
 
[[Fil:Fig522-406.png|500px]]
 
Figur 1 Eksempel på injisert sone
 
Sementtypene som vanligvis benyttes til injeksjon kan deles i to kategorier, industrisement og mikrosement. Avhengig av bergartstype og tilstedeværelse av leire på sprekkene velges det sementtype.
 
==== Nødtiltak mot setninger ====
Ved tunneldrift skjer det normalt noe endringer i grunnvannstrømningene i bakken. Ofte får ikke dette vesentlige konsekvenser på overflaten. I enkelte tilfeller kan det imidlertid oppstå problemer i form av setninger på overflaten. Dersom det ligger løsmasser over fjellet, og grunnvannsnivået i massene senkes som følge av at man ikke har oppnådd tilstrekkelig lave vannlekkasjer inn i tunnelen, kan det medføre setninger i løsmassene. Dermed vil evt. bygninger som er fundamentert på disse løsmassene kunne få skadelige setninger som følge av poretrykksreduksjonen. I områder hvor det vurderes å være fare for setninger anbefales å sette ut poretrykksmålere for å kunne følge med på eventuelle endringer i poretrykket, og dermed kunne sette inn tiltak på et tidlig tidspunkt. Tiltak vil vanligvis bestå av vanninfiltrasjon i grunnen. Som oftest vil borebrønner som senkes noen meter ned i berg virke best. Det settes inn pakning i berget og påføres et moderat vanntrykk i forhold til overflaten.
 
=== Vann- og frostsikring, historikk===
Det er ca. 700 jernbanetunneler i berg i Norge, og de aller fleste er bygget uten noen form for systematisk vann- og frostsikring. De eldre tunnelene ble bygget enkelt, og tradisjonelle tiltak mot vann og is var mekanisk fjerning av is, isnisjer, utmuring, betongelementer, bølgeblikk, steinull, treverk og varmekabler. Lieråsen og Finsetunnelen er ustyrt med frostporter som åpnes og lukkes automatisk ved togpasssering og skal hindre gjennomtrekk.
Det er ca. 700 jernbanetunneler i berg i Norge, og de aller fleste er bygget uten noen form for systematisk vann- og frostsikring. De eldre tunnelene ble bygget enkelt, og tradisjonelle tiltak mot vann og is var mekanisk fjerning av is, isnisjer, utmuring, betongelementer, bølgeblikk, steinull, treverk og varmekabler. Lieråsen og Finsetunnelen er ustyrt med frostporter som åpnes og lukkes automatisk ved togpasssering og skal hindre gjennomtrekk.


Linje 48: Linje 32:
|}
|}


I perioden 1985-95 ble hvelv av ubeskyttet PE-skum anvendt som primærløsning for vann- og frostsikring i nye jernbanetunneler. Fra 1996 ble det ikke tillatt å benytte ubeskyttet PE-skum som primærløsning. Basert på en risikovurdering utført av DNV i 1996 ble det angitt maksimal størrelse på felt og minimumsavstand mellom felt av ubeskyttet PE-skum. Denne rapporten ble oppdatert i 2020.
I perioden 1985-1995 ble hvelv av ubeskyttet PE-skum anvendt som primærløsning for vann- og frostsikring i nye jernbanetunneler. Fra 1996 ble det ikke tillatt å benytte ubeskyttet PE-skum som primærløsning. Basert på en risikovurdering utført av DNV i 1996 ble det angitt maksimal størrelse på felt og minimumsavstand mellom felt av ubeskyttet PE-skum. Denne rapporten ble oppdatert i 2020.


Hvelv av betongelement ble fra 1995 tatt inn som aktuell vannsikringsløsning i regelverket sammen med hvelv av armert sprøytebetong (brannbeskyttet PE-skum), og følgende tunneler ble bygget i perioden 1998-2011:
Hvelv av betongelement ble fra 1995 tatt inn som aktuell vannsikringsløsning i regelverket sammen med hvelv av armert sprøytebetong (brannbeskyttet PE-skum), og følgende tunneler ble bygget i perioden 1998-2011:
Linje 57: Linje 41:
|-
|-
| 1996 || Mølleåsen (1677 m), Østfoldbanen || Brannbeskyttet PE-skum (på knøl)   
| 1996 || Mølleåsen (1677 m), Østfoldbanen || Brannbeskyttet PE-skum (på knøl)   
|-
| 1996 || Stavengåsen (910 m), Østfoldbanen || Brannbeskyttet PE-skum (på knøl) 
|-
|-
| 1998 || Bekkedalshøgda (1656 m), Gardermobanen || Betongelementhvelv
| 1998 || Bekkedalshøgda (1656 m), Gardermobanen || Betongelementhvelv
Linje 73: Linje 59:
|}
|}


For tunnelene Gevingåsen og Fellesprosjektet E6-Dovrebanen ble det valgt bergnære vannsikringsløsninger. I Gevingåsen tunnel ble ca. halvparten av tunnelen vannsikret med sprøytbar membran. For tunnelene på Fellesprosjektet E6-Dovrebanen ble kontaktstøp valgt som vannsikringsløsning.  
For tunnelene Gevingåsen og Fellesprosjektet E6-Dovrebanen ble det valgt bergnære vannsikringsløsninger. I Gevingåsen tunnel ble ca. halvparten av tunnelen vannsikret med sprøytbar membran og halvparten av tunnelen med hvelv av brannbeskyttet PE-skum. For tunnelene på Fellesprosjektet E6-Dovrebanen ble kontaktstøp valgt som vannsikringsløsning.  


{| class="wikitable"
{| class="wikitable"
|-
|-
! Åpningsår !! Tunnel (lengde, banestrekning) !! Vannsikringsløsning
! Åpningsår !! Tunnel (lengde), banestrekning !! Vannsikringsløsning
|-
|-
| 2011|| Gevingåsen tunnel (4400 m), Nordlandsbanen || Hvelv av brannbeskyttet PE-skum og sprøytbar membran
| 2011|| Gevingåsen tunnel (4400 m), Nordlandsbanen || Hvelv av brannbeskyttet PE-skum og sprøytbar membran
Linje 92: Linje 78:
! Åpningsår !! Tunnel (lengde), banestrekning !! Vannsikringsløsning
! Åpningsår !! Tunnel (lengde), banestrekning !! Vannsikringsløsning
|-
|-
| 2016 || Holmestrandsporten (12 385 m), Vestfoldbanen || Betongelementhvelv (et lite parti med sprøytbar membran  
| 2016 || Holmestrandsporten (12 385 m), Vestfoldbanen || Betongelementhvelv (et lite parti med sprøytbar membran)
|-
|-
| 2017 || Brennhågen tunnel (830 m), Ofotbanen || Brannbeskyttet PE-skum
| 2017 || Brennhågen tunnel (830 m), Ofotbanen || Brannbeskyttet PE-skum
Linje 111: Linje 97:
|}
|}


Følgende tunneler er under bygging:
Tunneler under bygging:
{| class="wikitable"
{| class="wikitable"
|-
|-
Linje 125: Linje 111:
|}
|}


= Vann- frostproblematikk =
Direkte drypp og rennende vann som treffer konstruksjonselementer av betong eller stål medfører raskt skader, og er ikke ønskelig i jernbanetunneler. Generelle fuktutslag i vegger og vann som kommer inn i tunnelen i sålen anses imidlertid ikke å være av betydning for driften av tunnelen. Foruten rene drypp på utstyr, er det kombinasjonen fritt vann og frost som skaper de store driftsutfordringene. Oppbygging av is som innsnevrer profilet danner istapper eller vokser inn i sporet, kan forårsake avsporing og representerer en betydelig sikkerhetsrisiko. Dette krever mye manuelt og mekanisk arbeid i den kalde årstiden.


* 1996- dd.: Søk etter erstatningsprodukt i eksisterende tunneler.
De vanligste metodene for vannsikring kan deles i to hovedgrupper:


# Frittstående konstruksjoner (hvelv av betongelementer og PE-skum)
# Konstruksjoner i direktekontakt med bergsikringen (kontaktstøpt betonghvelv med membran og vanntett sprøyteebeongkledning)


Teknisk regelverk, prosjektering og bygging
== Vanntrykk ==
{| class="wikitable"
Det blir ofte påpekt og advart mot konsekvensene av oppbygging av høyt vanntrykk inn mot vannsikringsløsninger i direktekontakt med bergsikringen. Teoretisk høyeste vanntrykk baseres på avstanden fra grunnvannsspeilet til tunnelheng, og gjennom naturlige og sprengningsinduserte sprekker i bergoverflaten finner vannet nye veier fra en membrantett tunneloverflate til den åpne sålen med installert drenering. Det er gjennom feltforsøk målt en svak til moderat trykkoppbygging bak membraner, men ikke trykk nær teoretisk høyeste vanntrykk, eller trykk som kan ventes å skade konstruksjonen. Alt tyder på at vannet tar «minste motstands vei» gjennom bergets sprekkesystem fram til den drenerte sålen. Bergets oppsprekking i sprengningsskadesonen, de første ca. 20-40 cm fra den sprengte konturoverflaten, har vist seg å ha en betydelig drenerende (vanntrykksavlastende) effekt.
|-
! År!! Løsning
|-
| -1996|| Hvelv av betongelement eller ubeskyttet PE-skum
|-
| 1997-2012|| Hvelv av betongelementer eller brannbeskyttet PE-skum
|-
| 2013-2015|| Hvelv av betongelementer, brannbeskyttet PE-skum, sprøytbar membran og full utstøpning
|-
| 2016-|| Sprøytbar membran og full utstøpning
|}


Teknisk regelverk, vedlikehold
I helt tette (udrenerte) tunneler er det i Europa lang erfaring og praksis med at den indre kledningen dimensjoneres for å kunne ta opp maksimalt teoretisk vanntrykk. Blixtunnelen er bygget etter dette prinsippet med betongsegmenter i hele tunneltverrsnittet.
{| class="wikitable"
|-
! År!! Løsning
|-
| 1998-2008|| Tillatt begrenset bruk av ubeskyttet PE-skum, godkjente produkter (gummiprodukter)
|-
| 2008-2014|| Plastmembraner
|-
| 2014- || Gjeninnført tilatt begrenset bruk av ubeskyttet PE-skum
|-
|}


Det er ikke funnet eksempler på at det har oppstått skader som følge av vanntrykk i drenerte tunneler med membraner. Over tid vil det sannsynligvis felles ut mineraler og avsettes leirpartikler i sprekkene inn mot tunnelen slik at drenasjekapasiteten mot sålen reduseres. Dette vil kunne medføre noe høyere vanntrykk inn mot membranen over tid.


* 1985-95 Hvelv av ubeskyttet PE-skum anvendt som primærløsning for vann- og frostsikring i nye vei- og jernbanetunneler (kun 7 jernbanetunneler bygget i denne perioden)
For løsningen med permanent sprøytebetongkledning vanntettet med sprøytbar membran er det avdekket at endringen i permeabilitet inn mot membranen, og det faktum at hele kledningskonstruksjonen har en betydelig vanndamppermeabilitet, gjør det svært usannsynlig med en trykkoppbygging som kan skade bergsikring eller membranen. Skulle det likevel skje at trykket blir så stort at det begynner å deformere den fiberarmerte sprøytebetongen, forventer man at konsekvensen vil være at det åpner seg et riss og det dannes en fuktflekk. Det vil ikke være betydelige vannmengder da disse er håndtert under tunneldrivingen ved hjelp av forinjeksjon. Det vil derfor være liten sannsynlighet for at det skal løsne og falle ned fragmenter av sprøytebetong som vil ha betydning for sikkerheten i tunnelen.
* Ikke tillatt å benytte PE-skum uten armert sprøytebetong fra 1996 som primærløsning
* Krav til begrenset bruk av ubeskyttet PE-skum i eksisterende tunneler basert på en risikovurdering utført av DNV i 1996. Anga maksimal størrelse på felt og minimumsavstand mellom felt. Rapporten oppdatert i 2020.
* 1996- dd.: Søk etter erstatningsprodukt i eksisterende tunneler.


{| class="wikitable"
== Frost ==
|-
Selv om det tradisjonelt har vært vanlig å integrere vannavskjerming og frostisolasjon i samme løsning som én felles installasjon, er det viktig å være bevisst på de ulike funksjonskravene. De aller fleste norske bergarter tåler frost på en god måte, og kjente problemer i jernbanetunneler er knyttet til fritt vann i tunnelrommet (oppbygging av is), og ikke frostsprengning. Dersom vannet ikke trenger gjennom en kombinert bergsikring og vannavskjerming, er det i Norge ikke funnet eksempler på problemer som følge av at vann eventuelt fryser inne i berget eller i bergsikringen.
! År
! Produkt
! Kommentar
|-
| 2001
| Plastskjermer
| Ingen produkter ble klare for testing.
|-
| 2003-10
| Gummimatter
| To produkter godkjent 2007 iht. brannkrav. Fikk begrenset anvendelsområde som vannsikring pga. mekaniske egenskaper.
|-
| 2010
| Duk
| Testet i Finsetunnelen i 2010 som brannbeskyttelse av PE-skum. Løsningen ble raskt ødelagt pga. påkjenningene fra togtrafikken.
|-
| 2011-18
| Plastmembran
| Ett produkt godkjent 2012 for vannsikring. Produktet hadde ikke isolerende egenskaper. Delaminering i 2018 førte til stans av all videre bruk.
|-
| 2017-19
| Anskaffelsesprosess
| Etterspurt markedet etter nye produkter. Ingen leverandører meldte interesse.
|-
| 2020-21
| Kontaktet av leverandører
| Samtaler med fire leverandører av mulige produkter.
|}


==== Funksjon====
Frittstående konstruksjoner må enten isoleres slik at vannet ikke fryser i hulrommet mellom bergsikringen og hvelvet, eller så må hvelvet dimensjoneres for å kunne ta opp de maksimale islaster som vil kunne bygges opp mellom bergsikring og hvelv. I praksis er det det første man tradisjonelt har gjort, med tillegg av kapasitet for å kunne ta blokknedfall som følge av mulig sviktende bergsikring. Dette som en kompensasjon for manglende og uønskede visitasjonsmuligheter, og som et resultat av ulykken i veitunnelen Hanekleiva i Vestfold.
Jernbanetunneler krever i likhet med andre trafikktunneler at det utføres vann- og frostsikring for å ivareta gjeldende funksjonskrav. Det er allikevel noen spesielle hensyn som må tas ved dimensjonering av vann- og frostsikring i jernbanetunneler. Opptredende trykk- og sugkrefter er betydelig høyere, og tilgjengelighet for vedlikehold er ofte meget begrenset.


Vann- og frostsikring i jernbanetunneler skal i hovedsak ivareta følgende to funksjonskrav:
Problemstillingen rundt frost må også knyttes opp mot varmevekslingen mellom berget og vannsikringsløsning/bergsikring. Det er etablert gode regnemodeller for å vise nullisotermens (frysepunktets) bevegelse innover i konstruksjonen ved temperatursvingninger på konstruksjonens overflate. Målinger i felt og laboratorier har vist at sprøytebetong og betong i denne sammenheng har en betydelig isolasjonsevne. Denne kan også forbedres betydelig ved å benytte spesielle mørtler med god isolasjonsevne.


* Hindre at vann og is kommer i berøring med tekniske installasjoner, derav også banelegeme.
Gjennom et doktorgradsarbeid på sprøytebetongkledning vanntettet med sprøytbar membran ved NTNU støttet av både Bane NOR og Statens vegvesen har man kommet langt i arbeidet med å lage en beregningsmodell for frostpåvirkning av konstruksjoner i tunnel basert på tidsserier av meteorologiske observasjoner. Dagens svært enkle metode basert på timegrader og tabellariske verdier for 100-års frost per kommune gir sannsynligvis for konservative verdier, med den følge at man isolerer betydelig større områder av tunnelen enn nødvendig. Betydningen av dette for de fire løsningene som per i dag er i bruk av Bane NOR er ulik. For hvelv av PE-skum betyr dette mest sannsynlig at man kunne ha erstattet PE-skumplatene med en dukmembran påsprøytet armert betong over lange strekninger. Denne metoden har ikke noen stor utbredelse i Norge, men benyttes i mange veitunneler i Sverige. For betongelementhvelv betyr dette at man kan redusere omfang med isolasjon på baksiden av elementene. I mange tilfeller kan isolasjon unngås helt.


* Hindre at issvuller får bygge seg inn i profilet slik at det medfører fare for rullende materiell
For løsningen med kontaktstøpt betonghvelv med membran foreligger det lite vitenskapelig materiale rundt problemstillingen med frost. Det er ikke kjent at det har forekommet skader i slike konstruksjoner på grunn av frost ved betongtykkelser på minimum 30 cm. Selve membranen vil ikke få varig skade av frysing, men den vil bli mindre elastisk når temperaturen er under null grader. Det forutsettes at ekspandert volum av frosset vann finner minste motstands vei inn i berget og langs med drenssjiktet, og at det derfor vil være et begrenset trykk som bygger seg opp ved evt. frysing av drensjiktet og bakenforliggende vannmettet sprøytebetong. I forbindelse med byggingen av Ulvintunnelen (2012-2015) i Eidsvoll er det montert termiske sensorer i konstruksjonen for å skaffe mer kunnskap om frostinntrenging i denne type konstruksjon, og eventuell virkning av dette.


==== Hensyn til miljø====
Gjennom doktorgradsarbeidet på sprøytebetongkledning vanntettet med sprøytbar membran, er løsningen vitenskapelig og teknisk dokumentert med hensyn på membranmaterialet, samvirket med bergsikring og forholdet til det tilbakeholdte vannet i berget og frost. Membranens egenskaper ved frostpåvirkning er en av faktorene som har vært undersøkt. Det er påvist at membranens elastisitetsegenskaper svekkes vesentlig hvis den utsettes for temperaturer lavere enn -3 °C. Syklisk frysing/tining ved minimumstemperatur -3 °C gir ingen vesentlig svekkelse av membranens in-situ strekkfasthet til grenseflatene mot sprøytebetongen. Membranen er ikke damptett, og det gjør at bergsikringen (sprøytebetongen) får en meget god in-situ frostbestandighet pga. den lave vannmetningsgraden av både betong- og membranmaterialet. Det er likevel grunn til å være oppmerksom på problemstillingen og gjøre beregninger for å anslå hvor nært tunnelmunningen løsningen bør benyttes i enkleste utførelse med standard 6 cm sprøytebetongoverdekning. For å bedre isolasjonsevnen kan man gå over til en dekkbetong med bedre isolasjonsevne (lavere varmeledningstall), eller øke tykkelsen på sprøytebetong.
I tillegg til funksjonskrav kan geologisk og geografisk betingede hensyn kreve at tunneler skal tettes tilstrekkelig for å unngå skader på overliggende miljø. For å begrense faren for setningsskader i områder med tettbebyggelse skal det stilles krav til maksimalt tillatt innlekkasje pr. min. og løpemeter tunnel.


Det eksisterer ingen generelle krav til tillatt mengde innlekkende vann i tunneler. Dette medfører at det ved hvert enkelt tunnelprosjekt spesifiseres hvilke krav som skal oppnås. Det må derfor foretas kartlegging av terrenget ovenfor tunnelen for å vurdere potensielle skadevirkninger av en eventuell grunnvannssenkning.
= Ulike vannsikringsløsninger =


Tiltak som bør utføres i forkant av utbyggingen for å forhindre setningsproblemer på grunn av vannlekkasjer og eventuelt fastsettelse tetthetskrav er beskrevet i kapittel 3 “Forundersøkelser”.
== Hvelv av PE-skum brannbeskyttet med armert sprøytebetong (sprøytebetonghvelv)==
Vann- og frostsikring med PE-skumplater og sprøytebetong har vært den dominerende løsningen i mange år, både for vei- og jernbanetunneler. Konstruksjonen består typisk av 50-60 mm PE-skum (tykkelse varierer avhengig av frostmengde) som monteres i styrt profil utenfor normalprofilet ved hjelp av bergbolter, typisk ø16 mm, cc 1,2 m x 1,2 m, og omtales da som sprøytebetonghvelv. For jernbanetunneler med høye hastigheter er bolteinnfesting typisk økt til ø20 mm og cc 1,0 m x 1,2 m. PE-skummet brannbeskyttes med minimum 80 mm nettarmert sprøytebetong. Sprøytebetongen tilsettes PP-fier (2 kg/m<sup>3</sup>) for å øke brannbestandigheten. Konstruksjonen føres ned mot tunnelsålen slik at lekkasjevann føres sikkert ned til drensgrøfter. Det etableres dilitasjonsfuger med 30 m innbyrdes avstand rundt hele profilet for kontrollert opptakelse av bevegelser som følge av temperaturvariasjoner i sprøytebetongen.


==== Levetid ====
[[Fil:PE skum hvelv.PNG|600px]]
I konstruksjonens levetid utføres vedlikehold i henhold til generiske arbeidsrutiner. Feil og mangler som oppdages under inspeksjon skal utbedres eller holdes under oppsikt avhengig av feiltype og alvorlighetsgrad.


Erfaring fra norske jernbanetunneler som viser at vedlikeholdskostnader for tunnelene i hovedsak er knyttet til installasjoner og iskjøving. Forhold som totalt tilsier mindre vedlikehold i tunneler enn for fri linje er mindre utstyr og fravær av kontaktledningsmaster. Dette er markant forskjellig fra veisektoren der store deler av vedlikeholdskostnadene er knyttet til renhold og kontroll av teknisk utstyr.  
Figur 1: Sprøytebetonghvelv. Detalj.


Teknisk levetid defineres som den tiden det tar før komponentene eller utstyret ikke lenger oppfyller sin tiltenkte funksjon. Krav til teknisk levetid (TL) uttrykkes som antall år som forventes oppnådd med minst 90 % sannsynlighet. Middelverdien av teknisk levetid antas å være minst 25 % større enn levetidskravet. Forventet middelverdi av teknisk levetid blir dermed 150 år for TL = 120, 100 år for TL = 80, 62,5 år for TL = 50 osv.
== Hvelv av betongelementer ==
Konstruksjonen består av frittstående prefabrikkerte betongelementer med tykkelse 200 mm med heldekkende membran på fjellsiden som vannsikring. Konstruksjonen isoleres ved behov. PP-fuber tilsettes for å hindre/redusere avskalling av betong ved brann.


Krav til teknisk levetid gjelder helt system. Det forutsettes at visse komponenter kan vedlikeholdes eller byttes i løpet av den angitte tekniske levetiden.
[[Fil:Betongelementhvelv.PNG|500px]]


Livsløpskostnaden skal beregnes over en periode tilsvarende krav til teknisk levetid for vann- og frostsikringskonstruksjonen. Det skal også inngå trafikkostnader tilknyttet avstengning for vedlikehold og utskifting.
Figur 2: Betongelementhvelv. Detalj.


==== Vann- og frostsikringsprinsipper====
== Kontaktstøpt betonghvelv med membran  ==
Ved planlegging av vann- og frostsikring i jernbanetunneler er det i første rekke miljøkrav, funksjonskrav og økonomi som vil være avgjørende for valg av løsninger. Tunnelens lengde og planlagte trafikkmengde har betydning for hvilke krav som stilles til brannbeskyttelse av vann- og frostsikring, se for øvrig avsnitt 4.2.5.  
Løsningen er i direkte kontakt med berget. Membran monteres på avrettet underlag, og med fiberduk som beskyttelse for å unngå rifter og skader i membran. Deretter etableres en kontinuerlig kontaktstøp med tykkelse 300 mm. Løsningen er ikke isolert. Frostsprengning anses ikke å være noe problem da betongutstøpingen vil være tørr og uten mating av vann, se beskrivelse om frost i [https://proing.banenor.no/wiki/veiledere/konstruksjonsprinsipp#vann-_og_frostproblematikk kap.4 Vann- og frostproblematikk] i veileder for konstruksjonsprinsipp.  


Følgende typer konstruksjoner for vann- og frostsikring er aktuelle:
[[Fil:Kontaktstøp.PNG|600px]]


* Hvelv av betongelementer, jf. figur 8 og 9
Figur 3: Kontaktstøpt betonghvelv med membran. Detalj.
* Hvelv av PE-skum brannbeskyttet med armert sprøytebetong, jf. figur 10 og 11
* Sprøytbar membran (kun som vannsikring), jf. figur 12
* Betongutstøping med drensjikt og membran, jf. 13


[[Fil:Fig522-407.png|500px]]
== Sprøytebetongkledning vanntettet med sprøytbar membran ==
Løsningen består av en komposittkonstruksjon med sprøytebetong og vanntett sprøytbar mmbran. Membranen befinner seg mellom to lag av sprøytebetong. Før membran kan påføres må overflaten av sprøytebetong til bergsikring jevnes ut. Vannlekkasjer og fuktflekker må temporært dreneres. Dete gjøres med 10 mm diameter drenshull, lengde ca. 20-30 cm forsynt med drensplugger. Disse injiseres etter at membranen er påført og herdet.  


Figur 8 Prinsipp for vann og frostsikring med betongelementer
Membranen kan bli svekket av gjentagende frostsykluser. Dette gjør at metoden i enkleste utførelse ikke uten videre bør brukes ved minimumstemperatur lavere enn -3 °C ved membranens posisjon. Dette kan håndteres ved å dimensjonere dekksjiktet tykkere, eller ved å benytte en mørtel som har en betydelig lavere varmeledningsevne enn standard sprøytebetong.


[[Fil:Sprøytebetongkledning.PNG|600px]]


[[Fil:Fig522-408.png|500px]]
Figur 4: Sprøytebetongkledning vanntettet med sprøytbar membran. Detalj.


Figur 9 Betongelementer, detalj
= Vann- og frostsikring i trafikksatt tunnel=
I konstruksjonens levetid utføres vedlikehold i henhold til generiske arbeidsrutiner. Feil og mangler som oppdages under inspeksjon skal utbedres eller holdes under oppsikt avhengig av feiltype og alvorlighetsgrad.Erfaring fra norske jernbanetunneler som viser at vedlikeholdskostnader for tunnelene i hovedsak er knyttet til installasjoner og iskjøving. Forhold som totalt tilsier mindre vedlikehold i tunneler enn for fri linje er mindre utstyr og fravær av kontaktledningsmaster. Dette er markant forskjellig fra veisektoren der store deler av vedlikeholdskostnadene er knyttet til renhold og kontroll av teknisk utstyr.


De fleste av de eldre jernbanetunnelene har et tunneltverrsnitt som gir minimalt med rom for å bygge inn vannsikringsløsninger.


[[Fil:Fig522-409.png|500px]]
Valg av metode styres av ulike egenskaper ved tunnelen. Disse må kartlegges som grunnlag for å velge metode for vann- og frostsikring:


Figur 10 Prinsipp for vann og frostsikring med armert sprøytebetong
{| class="wikitable"
|-
! Parameter !! Beskrivelse
|-
| Vannmengde||
* Varierer over årstider. Dette må tas i betraktning ved kartlegging.
* Enkelte metoder er sårbare for større vannmengder under installasjon.
|-
| Spredning av lekkasjepunkter||
* Flekkvis: Sikring kan utføres lokalt og på små felt.
* Seksjoner: Hele profilet sikres seksjosnvis.
* I frostsone bør seksjonsvis avskjerming velges
|-
| Frostmengde ||
* Dimensjonerende frostmengde/belastning må bestemmes
* Vannavskjerming med membraner har varierende isolasjonsevne. Vesentlig å hindre konveksjon/luftlekkasjer ved å tette kanter.
* Ved åpninger/luftlekkasjer vil frost kunne fryse vannet bak vannavskjermingen og belaste denne til brudd.
* Vedvarende vanntilstrømning kan tilføre varme og hindre frysing selv ved begrenset isolasjonsevne for vannavskjermingen. 
* Det er begrenset erfaring med bruk av sprøytede vanntettingsmembraner i frostsonen. Membranens elastisitetsegenskaper svekkes vesentlig dersom den utsettes for temperaturer lavere enn –5°C. Syklisk frysing/tining ved minimumstemperatur gir imidlertid ingen vesentlig svekkelse av membranens in-situ strekkfasthet til grenseflatene mot sprøytebetongen.
* Klimatiske og topografiske forhold kan gi kontinuerlig luftstrømning i en retning og lang frostsone i en ende samt begrenset eller ingen frost i den andre enden.
* Retningsdrift kan gi asymmetrisk frostinntrengning.
* Hvite tider/trafikkstans kan endre trekkretning.
|-
|  Profil, avstand fra berg til trafikkprofil||
* Vesentlig utfordring for trafikksatte tunneler. Krever skanning for kontroll. Skaff kontroll over toleranser som kvalitet av oppmåling, løfteskjema, overhøyde, KL.
* Fremtidige krav til profil.
* Plass for bergsikring.
* Byggehøyde for vannavskjerming varierer fra 3-30cm.
* Stor bergruhet og stort luftvolum bak vannavskjermingen vil øke belastningen på vannavskjermingen ved trykk/sug.
|-
| Tunnellengde ||
* Påvirker frostsone.
* Påvirker effektivitet ved montering. Logistikk kan begrense antall angrepspunkter ved større prosjekt. Kan styre valg av løsning.
|-
| Geologi og bergsikring ||
* Lastpåkjenning fra vannavskjerming. Statisk og dynamisk.
* Tilstand for geologi og bergsikring må kartlegges før installasjon av vannavskjerming.
|-
| KL og andre installasjoner ||
* Kl og andre installasjoner må beskyttes/demonteres ved påføring av sprøytbare vannavskjermingsløsninger.
* Membranløsninger kan monteres uten demontering av KL. Avveies mot framdrift.
* Vurder vannavskjerming ved fornying av KL.
* Ved planlagt fremtidig fornying av KL-oppheng bør valg av avskjerming avstemmes mot KL-system.
* Valgt avskjerming kan gi redusert fleksibilitet for andre installasjoner.
|-
| Fremføringshastighet. Fremtidig økning ||
* Høy hastighet gir behov større profil; Dynamisk lastprofil, trykk/sug-krefter.
* Økt hastighet kan påvirke krav knyttet til KL.
|-
| Disponering og brudd ||
* Hvilke tidsluker er tilgjengelig for montasje av vannavskjerming? Metodene skiller sterkt i behov for luker for kontinuerlig montering.
* Er det planlagt brudd som kan brukes, og hvilken tilgang til å stenge tunnel finnes ved brudd? Deles tiden med annet arbeid?
* Sprøytede løsninger kan kreve frostfri/tørre forhold. Montering om vinteren kan være ugunstig.
|-
| Levetid for tunnel ||
* Hva er forventet levetid for tunnelen?
|-
| Generell tilstand for tunnel. Nært forestående fornyelse? ||
* Vil tunnelen gjennomgå fornyelse i nær fremtid? Kan vannavskjerming utsettes?
|-
| Tilgjengelighet, geografisk  ||
* Er tunnelen vanskelig tilgjengelig ved tilkomst uten sportilgang?
|-
| Brann ||
* Er det spesielle forhold knyttet til brann? 
* Er det signal i tunnel som kan føre til at tog stopper i tunnelen? Begrenser valg av løsninger.
|-
| Ioner, vannkjemi, utfelling ||
* Er lekkasjevannet korrosivt?
* Transporterer vannet materiale som avsettes i tunnel?
|-
| Omdømme ||
|-
| Sårbare resipienter, avrenning ||
* Kan påvirke valg av sprøyteprodukter eller injeksjonsmaterialer.
|-
|  Aksept for nye løsninger/trygt og gjennomprøvd  ||
* I hvilken grad aksepteres løsninger som ikke er fullt utprøvd for case.
|-
| Overdekning ||
* Enkelte løsninger kan utføres fra overflate der overdekningen er liten.
* Ved lav overdekning kan lekkasjevannet ha lave temperaturer
* Berget kan ha lave temperaturer ved liten overdekning
|-
|}


== Teori ==
=== Lekkasjevann ===
Flertallet av tunnelene ligger under normalt grunnvannsnivå. Det vil dermed alltid være et vanntrykk mot tunnelen. Trykket kan til dels bli høyt hvis vannet møter innskrenkninger. Bergvolumet rundt tunneler er oppsprukket i et uforutsigbart mønster. Avhengig av vær og sesong vil vannmengde og lekkasjevei variere. Vannets temperatur vil variere, men vil vanligvis være fra 0-6 °C. Trykksatt vann kan være underkjølt. Lekkasjevannet inneholder en varmemengde som kan være gunstig for å unngå frysing. Dermed kan selv en begrenset isolasjonsevne hos vannavskjermingen gi en frostfri løsning gitt gode tiltak for å hindre konveksjon.


[[Fil:Fig522-410.png|500px]]
=== Trykk/sug ===
Avstand mellom tog og tunnelvegg er kort. Toget fyller en vesentlig del av tverrsnittet i tunnelen. Dette fortrenger store mengder luft som gir vesentlige trykk- og sugpulser. Kreftene øker ved økt hastighet og små profilmarginer. Vannavskjermingsløsninger bør utføres lufttett for å hindre konveksjon. Dermed vil luftvolum bak vannavskjermingen komprimeres/ekspandere og belaste vannavskjerming og innfesting av denne. Sammenlignet med veitunneler er disse kreftene vesentlig større. Dermed kan ikke aksepterte løsninger for veitunneler direkte overføres til jernbanetunneler. Produkter/system må dimensjoneres for makslaster og lastvekslinger for å unngå utmatting.  


Figur 11 PE-skum påført sprøytebetong, detalj
=== Brann ===
Produkter må tilfredsstille strenge krav til brannmotstand, giftighet av branngass og drypp av brennende dråper. Dagens aksept av ubeskyttet PE-skum er begrenset i areal og at tog ikke kan stanse på signal der PE-skum er montert.


=== Frost ===
I tunnelportalene vil tunnelluft ha minusgrader. Denne frostsonen kan beregnes, men beregningsmodellene og grunnlagsdata for disse er grove. For eksisterende tunneler er erfaringer fra drift en verdifull kilde til å definere frostsone. Frostsonen i hver ende av en tunnel lengre enn 1 km vil ofte være ulik.


[[Fil:Sprøytbar membran.png|500px]]
Lekkasjevann må hindres i å fryse bak avskjermingen. Der vannet fryser kan frostsprengning ødelegge avskjermingen eller denne presses ut i trafikkprofilet. Is kan også belaste avskjermingen til brudd. Det er vesentlig å hindre konveksjon ved å lage en lufttett kant på avskjermingen. Trykk/sug-pulser kan likevel forventes å gi noe sirkulasjon av luft bak vannavskjermingen.  


Figur 12 Sprøytbar membran
Membraner for vannavskjerming har ulik grad av isolasjonsevne. Membraner med lav isolasjonsevne kan fungere tilfredsstillende der konveksjon elimineres og der lekkasjevannet tilfører tilstrekkelig varme. Isolasjonsbehov må prosjekteres.


Montering av PE-plater kan normalt monteres i isfrie perioder. Det er derfor viktig at områder med isdannelser merkes om vintrene for å sikre at platene senere blir montert på riktig plass.


[[Fil:Betongutstøping.png|500px]]
Frostisolasjonen dimensjoneres i henhold til frostmengden på stedet. Ved fastsettelse av dimensjoneringskriteriet legges frostmengden F<sub>100</sub> (h<sup>0</sup>C) til grunn. Kart over frostmengder finnes i Statens vegvesens håndbok N200: [https://kart.vegvesen.no/portal/apps/webappviewer/index.html?id=99d497b7a0c543859a260e24ca50b5c8 Frostmengde F10 og F100]
 
Figur 13 Betongutstøping med drensjikt og membran
 
==== Dimensjonering av frostisolasjon====
Frostisolasjonen dimensjoneres i henhold til frostmengden på stedet. Ved fastsettelse av dimensjoneringskriteriet legges frostmengden F<sub>100</sub> (h<sup>0</sup>C) til grunn. Kart over frostmengder finnes i bl.a. i Jernbaneverkets lærebok L52 Underbygning, kap. 6 Frost.
 
Frostmengden innover i tunnelen må vurderes i hvert enkelt tilfelle. I tunneler opptil 3 km må det påregnes frost i hele tunnelens lengde. Det medfører at vannsikring må utføres med isolasjon og at dreneringssystemet i tunnelsålen må isoleres eller legges på frostfri dybde. I lengre tunneler kan frostsoner av varierende lengder opptre i begge ender, mens midtpartiet kan være frostfritt. Lokale meteorologiske forhold og tunnelens stigning vil være avgjørende for trekkretning og hvor langt frosten trenger inn i tunnelen.


For de aktuelle isolasjonsmaterialer benyttes følgende minimumstykkelser:
Forholdet mellom frostmengde og nødvendig isolasjonstykkelse er vist i figuren:
 
PE-skum: 50 mm
Ekstrudert polystyren (XPS): 40 mm
 
Forholdet mellom frostmengde og nødvendig isolasjonstykkelse er vist i figur 12.


[[Fil:Fig522-411.png|500px]]
[[Fil:Fig522-411.png|500px]]


Figur 12 Forholdet mellom dimensjonerende frostmengde og krav til isolasjonstykkelse.
Figur 5: Forholdet mellom dimensjonerende frostmengde og krav til isolasjonstykkelse.


Erfaringer fra nyere tunneler har vist at PE-skum med sprøytebetongsikring også blir brukt som vannavskjerming i frostfrie partier.
=== Ioner ===
Lekkasjevannet kan transportere mineraler og salter som avsettes på komponenter. Dette kan gi korrosjon, degradere materialer, føre til krypstrømmer, redusere isolasjonsevne og tynge ned komponenter slik at disse mister sin funksjon eller kommer i konflikt med trafikkprofilet/KL-anlegget. Ved valg av avskjermingsløsning må denne tilpasses den vannkjemi tunnelen har.


Dimensjonering for trykk- og sugkrefter foretas etter prinsipper gitt i Jernbaneverkets regelverk JD 520, kap.12 Tunneler.
== Aktuelle metoder ==
Vannavskjerming kan listes under følgende hovedkategorier:


==== Brannbeskyttelse av frostisolasjon====
# Membran
På grunnlag av simuleringer og teoretiske beregninger, utført av Det Norske Veritas, har Jernbaneverket innført en del begrensninger til bruk av PE-skum uten brannbeskyttelse. For at brann skal oppstå i PE-skum er det forutsatt at et brennende tog må stoppe i tunnelen. Tunnelens lengde og togtetthet er derfor de parametrene som er premissgivende for krav til brannbeskyttelse.
# Hvelv
# Sprøytbar membran på berget
# Injeksjon
# Drenering av bergmasse/tiltak fra dagen


For tunneler som er kortere enn 500 meter er det ikke krav om brannbeskyttelse av PE-skum.  
''Membraner'' består av vanntette duker av ulik tykkelse som henges opp mot fjellet med minimal avstand til fjell. Byggehøyde for tynne duker med begrenset frostisolasjon er 2-10cm. Kombinasjon av monteringsergonomi, brannegenskaper, levetid og mekanisk styrke gjør at det er få tilgjengelige produkter av denne kategori. Sandwich-produkter kan gi akseptable løsninger, men levetid for produkter brukt i dag har vært for kort. Det forventes at nye Sandwich-produkter som tilfredsstiller krav blir tilgjengelig innen kort tid.  


For høytrafikkerte tunneler, dvs. enkeltsporede tunneler med mer enn 30 tog per døgn, og dobbeltsporede tunneler med mer enn 80 tog per døgn, skal alt PE-skum i tunneler lengre enn 500 meter brannsikres.  
Membranløsninger har for det meste en smidig montasje uten bruk av store maskiner og krav til lang disponeringstid. Det kan forventes en akseptabel fremdrift ved arbeidsluker på 2-3 timer.  
For lavtrafikkerte tunneler skal PE-skumfelter større enn 50 m<sup>2</sup> sikres. Krav til avstand mellom hvert felt er 100 meter i tunneler opp til 5000 meters lengde, og 200 meter i lengre tunneler. Er avstanden mellom feltene mindre skal PE‑skumplatene brannsikres. Disse kravene er basert på beregnet selvantennelsesteperatur og de brannlaster brennende PE-skum representerer.
Isolerte membraner har til nå vært av PE-skum. Denne har uakseptable brannegenskaper og kan bare benyttes i små mengder der tog ikke stanser på signal. TRV beskriver krav til bruk av PE-skum. Det forventes at det blir tilgjengelig isolerende membran med akseptable egenskaper innen kort tid.  


For å oppnå tilstrekkelig bestandighet og levetid skal brannsikring av PE-skum utføres med 70 mm nettarmert sprøytebetong uten stålfiber. Ved å benytte sprøytebetong uten fiberarmering oppnås bedre komprimering og tettere sprøytebetong.
''Hvelv.'' Løsningen består av betongelementer eller PE-skum montert med avstand til tunnelvegg. PE-skum brannbeskyttes med sprøytebetong. Løsningen tar stor plass, typisk 50-100 cm og har stiv geometri. Den ansees som uaktuell for de fleste eksisterende tunneler. Den vil kreve total demontering av objekter på vegg og tak.


==== Punktlekkasjer====
''Sprøytede vannavskjerminger''. Løsningen består av et system av vanntett produkt og betong som sprøytes på tunnelveggen. Det er liten erfaring med bruk av dette ved rehabilitering og metoden er generelt umoden. Det har til nå vært utfordrende å benytte denne metoden ved våte forhold. Byggehøyde er fra 6-20cm. Prosessen fører til søl som krever demontering eller robust beskyttelse av KL og andre objekter. Metoden krever arbeidsluker på dager til uker der KL må beskyttes. Metoden har også krevende logistikk.  
Ofte er det små punktlekkasjer som forårsaker isdannelser i eksisterende tunneler. Slike punktlekkasjer kan normalt isoleres med noen få PE-plater. I korte tunneler med betydelig gjennomgående frostmengde oppstår ofte problemer med at vannet fryser bak PE-platene, og det bygger seg opp is. Dette kan medføre at platene brytes ned etter noen få vintre.  


Også ved slik etterisolering er det viktig å finne dimensjonerende frostmengde i området (jf. frostmengdekart i lærebok L521, kap. 6 Frost, eller tabeller i Vegnormal 018). Tunneler som ligger i fjellområder med store frostmengder kan ha behov for doble PE-plater, jf. figur .11. Tetting rundt kantene på platene er også viktig for å hindre kald luft å trenge inn bak platene.  
''Injeksjon.'' Vanntettende produkt, sementbasert eller polymerere trykkes inn i sprekkesystem gjennom borede hull. Metoden er i utstrakt bruk ved bygging av tunneler, med en vesentlig forskjell at bergrommet tettes før det sprenges ut. Etterinjeksjon (injeksjon etter at bergrommet er sprengt ut) har tradisjonelt levert svake resultater, samtidig har det vært en utvikling i materialer og metoder. Erfaringer med metoden er at lekkasjer flytter på seg og at det er behov for mange runder før ønsket resultat oppnås. Metoden krever borerigg for berg, og pumpe for injeksjonsmasse. Den er likevel relativt smidig der det er mulig å veksle inn og ut fra sporet nær tunnel. Luker på 3-4t kan benyttes. Metoden er likevel tidkrevende med lav produksjon. Metoden har tidligere skapt vesentlige omdømmeskader, selv om teknologi og materialer har utviklet seg. Det er også viktig å ha kontroll på bergsikringen ved injeksjon. Injeksjonstrykk eller vanntrykk etter utført injeksjon kan påkjenne berget og føre til nedfall .


Montering av PE-plater kan normalt monteres i isfrie perioder. Det er derfor viktig at områder med isdannelser merkes om vintrene for å sikre at platene senere blir montert på riktig plass.
''Drenering av bergmasse.'' For enkelte svært lokale og store lekkasjer kan det være egnet å bore dreneringsbrønner og samle opp lekkasjen i lukket drenering. Ofte må dette kombineres med injeksjon. Metoden er lite brukt, men kan ha sin nisje. Ved aktiv drenering er det viktig å vurdere om endret grunnvannstand kan ha negative konsekvenser for omgivelsene.


==== Lekkasjer over større felter====
''Metoder utført fra overflate over tunnel.'' Det bør vurderes om tiltak i dagen kan redusere vannlekkasjer. Dette kan gjøres ved å etablere/vedlikeholde dreneringsanlegg oppstrøms tunnel. Det kan også være mulig å etablere tett membran over løsmassetunneler. Dette er mest aktuelt der grunnvannsnivået er lavt i forhold til tunnel. Det er gjort forsøk med å wire-sage slisser for å avskjære vannstrøm inn mot tunnel og drenere slissene til frostsikker drenering. Ved slik wire-saging er det vesentlig å ha kontroll bergsikringen. Injeksjon kan utføres fra dagen der overdekning er lav.  
Ved behov for isolering av sammenhengende innlekkasjer over lengre partier i tunnelene, må det vurderes om PE-skumplater skal settes opp som styrt profil eller om platene skal følge ujevnhetene i tunnelkonturen. Dette vil avhenge av størrelsen ujevnhetene og tunneltverrsnittet.  


Som eksempel ble det i Romeriksporten satt av 30 cm til vann- og frostsikring i de partiene hvor det var planlagt å bruke PE-skum belagt med armert sprøytebetong. Partiene med betongelementer ble beregnet å ha behov for ca. 45 cm i forhold til teoretisk profil.
{| class="wikitable"
 
|-
=== Rom bak vann- og frostsikringskonstruksjonen ===
! Type!! Beskrivelse!! Tykkelse/plassbehov!! Fordeler!! Ulemper
Det er i utgangspunktet ønskelig å unngå behov for visuell inspeksjon bak konstruksjoner. Visuell inspeksjon defineres som mulig dersom kan man inspisere bergoverflaten, råsprengt eller sikret slik at konturen av bergoverflaten fortsatt er synlig.
|-
 
| PE-skum brannbeskyttet med sprøytebetong || Matter av PE-skum som monteres mot bergoverflaten og dekkes med sprøytebetong.|| Ca. 20-30 cm avhengig av krav til frostmotstand (tykkelse på PE-plater)|| Godkjent løsning, velprøvd og med god effekt. Også egnet i frostsonen|| Demontering/tildekking av KL-anlegg. Relativt plass- og tidkrevende. Vil som regel kreve strossing av berg og et lengre brudd>2-3uker
Begrunnelsen for å unngå visuell inspeksjon bak konstruksjoner ligger bl.a. i følgende forhold:
|-
* HMS og sikkerhet for personell som skal utføre inspeksjonen
| Ubeskyttet PE-skum|| Matter av PE-skum som monteres mot bergoverflaten|| Ca. 10-20 cm avhengig av krav til frostmotstand (tykkelse PE-plater)|| Fleksibel og rask metode. Strossing ikke alltid nødvendig. Trenger ikke demontering/tildekking av KL. Også egnet i frostsonen|| Tilfredsstiller ikke brannkrav. Begrensinger i feltstørrelse, avstand mellom felt og plassering ift. hovedsignal jf. Teknisk regelverk. Kan ikke settes opp der tog kan bli stående signal.
* Inspeksjon er tidkrevende og vil kreve stans i togtrafikken mens det pågår
|-
* Muligheten for å observere noe som helst er begrenset.
| Plastmembraner|| Plastmembran med brannhemmende egenskaper || > 5 cm|| Fleksibel og rask metode. Egnet i trange partier. Trenger ikke strossing og demontering/tildekking av KL.|| Sjeldent egnet i frostsonen. Usikkerheter knyttet til levetid og kapasitet ift. trykk/sug krefter.
 
|-
Der konstruksjonen hindrer visuell inspeksjon fra tunnelen, skal konstruksjonen dimensjoneres for lasten av en ekstrem blokk (60 kN = 6 tonn).
| Injeksjon («etterinjeksjon»)|| Boring av hull i berg som injiseres med ulike kjemiske komponenter|| Ingen || Ingen komponenter som krever vedlikehold, men lekkasjer kan gjenoppstå over tid.|| Usikkert resultat. Best egnet for mindre felt og definerte sprekker med konsentrerte lekkasjer. Tidkrevende. Vanskelig å oppnå tilstrekkelig tetthet. ofte suppleres med andre løsninger.
 
|-
==== Vurdering av ekstrem blokklast på betongelementløsning ====
| Injiserbare bolter («Thor-bolt o.l.)|| Bergsikringsbolter som kan injiseres med sementbaserte injeksjonsmidler|| Ingen || Bergsikringsbolt egnet for boltehull som «renner»|| I utgangspunktet en bergsikringsbolt for bruk boltehull med større vannlekkasjer. Kan muligens være egnet for tetting små og konsentrerte lekkasjer.  
Da lasten kan virke i en vilkårlig posisjon, må det gjøres en utvelgelse av hvilke punkter man anser som mest kritiske. Denne lasten skal virke vertikalt, derfor er det ansett at den vil ha mest påvikrning takelementene. Det er allikevel gjort en kontroll av veggelementene. Det er kommet frem til åtte ulike posisjoner av blokkklasten som er blitt vurdert, se figur:
|}
 
[[Fil:Posisjoner blokklast.jpg|senter|Posisjoner blokklast som er vurdert|400px]]
 
Det er forutsatt at den ekstreme blokklasten ikke kan virke samtidig som den generelle nyttelasten. Blokklasten er kun kombinert med egenlast og trykk- og suglaster. Det vil si at det er benyttet to lastkombinasjoner for hver ulike posisjon av blokklasten for verifikasjon:
* 1,0 * egenvekt + 1,0 * ekstrem blokklast + 1,0 * trykklast
* 1,0 * egenvekt + 1,0 * ekstrem blokklast + 1,0 * suglast
 
Alle beregninger er utført i ulykkesgrensetilstand. Følgende kontroller er utført i detalj:
* Forbindelsen (sikkerhetsplaten) mellom takelementene, maksimal utnyttelse 91 %
* Gjennomlokking av betongelementene fra punktlast (skjærkapasitet), maksimal utnyttelse 65 %
* Momentkapasitet av betongelementer, generelt armeringsbehov, kapasitet vurdert som tilfredsstillende
 
Beregningsmodellen viser at den ekstreme blokklasten vil påføre mer trykk mellom betongelementene, noe som virker positivt. I verste fall vil blokklasten bli liggende rett over en av sikkerhetsplatene, på kun ett element. Dette er den dimensjonerende situasjonen som er beregnet her.
 
Sikkerhetsplaten må overføre halve punktlasten til takelementet på andre siden (30 kN). I dette tilfellet vil det iht. beregningsmodellen også oppstå et tilleggstrykk 10 kN i knastene mellom elementene.
 
Fra før virker det et trykk på 16,2 kN fra egenvekten, mens trykklasten fra togene gir et strekk på 11,4 kN, lagt sammen gir det et trykk på 4,8 kN. Dette vil bidra til å redusere skjærkraften noe da en det vil gå som friksjon mellom knastene.
 
Skjærkrefter i sikkerhetsplaten fra egenvekt, trykk og smålaster er små (<0,2 kN) og ansett som neglisjerbare.
 
==== Vurdering av individuell risiko ====
Hendelsesdata over steinsprang og ras i jernbanetunneler i perioden 1970-2011, samt generell sikkerhetsstatistikk, viser at tunneler ikke er spesielt farlige objekter på jernbanenettet, hverken med hensyn til steinsprang og objekter i sporet eller andre hendelser.
 
Så langt det framgår av hendelsesrapporter har ingen av tunnelhendelsene medført alvorlig skade på personer. I forhold til Jernbaneverkets akseptkriterier for sikkerhet, både med hensyn til PLL (Potential Loss of Life), samt personellsikkerhet og reisendesikkerhet per personkm, har disse hendelsene ikke bidratt under rapporteringsperioden (1970-2010).
 
'''Individuell risiko'''
 
I tillegg til PLL som er risikoen for alle brukere samlet, er det viktig å beregne risikoen for den mest utsatte brukeren. Jernbaneverkets akseptkriterie for individuell risiko for 2.person (reisende) og 3.person (andre berørte), målt for mest eksponerte individ er '''10 <sup>-4</sup>'''(sannsynlighet for død per år), for all aktivitet knyttet til jernbane.
 
Beregning av individuell risiko:
 
Det antas at det mest eksponerte individet reiser 100 km i tunnel per dag, 300 dager per år = 30 000 togkm i tunnel per år.
 
Frekvens for togpåkjørsel av steinnedfall: 1 togpåkjørsel per 10<sup>7</sup> togkm = 10 000 000 togkm. Dette er et konservativt anslag gjort ut fra en beregning utført av DNV, se referanse.
 
Hvor ofte vil det mest eksponerte individet oppleve togpåkjørsel: 10 000 000 togkm/30 000 togkm i tunnel per år = 300 ): 1 påkjørsel per 300 år.
 
Vi antar at 5 % av disse er alvorlig hendelseskategori: 300*20 = 6000 år. Antar at halvparten av disse krever liv, og at det mest eksponerte individet har én prosent sjanse for å være en av de drepte:
 
0,01/12000 = '''8*10<sup>-7</sup>'''
 
'''Dvs. risikobidraget utgjør under 1 % av grenseverdien for akseptkriteriet for individuell risiko.'''
 
En tredjedel av kritiske ras eller blokknedfall som er rapportert i perioden er lokalisert til tunnelportalen. Mange av disse, kanskje størstedelen, kan ha forekommet fra berg over portalen eller i forskjæringen. Det viktigste forebyggende tiltaket for disse hendelsene vil være portaloverbygg og/eller rensk i forskjæringen.
 
Risikoen per togkm vil variere mye fra tunnel til tunnel avhengig av trafikknivå, geologi og sikringstiltak, blant annet i form av bergsikring og vann- og frostkonstruksjoner. Feilraten for kritiske nedfall fra nyere tunneler åpnet etter 1990 er lavere enn gjennomsnittet i rapporteringsperioden for tunneler med lengde over 1 km. Årsaken til dette kan være sammensatte. Det som imidlertid er klart er at vi stiller strengere krav til bygging i dag hva gjelder kvalitet av utførelse, dokumentasjon og oppfølging av sikring.  
 
Sett i lys av dette vil en tilrettelegging for rutinemessig inspeksjon bak vann- og frostsikringskonstruksjonen være unødvendig.

Siste sideversjon per 23. okt. 2024 kl. 10:22

__NUMBEREDHEADINGS__

Vann- og frostproblematikk

Generelt

Jernbanetunneler bygges normalt som drenerte konstruksjoner. Det betyr at man tillater innlekkasje av grunnvann i mengder som er akseptable for ikke å påføre overliggende natur og bebyggelse uttørking eller setninger av betydning. Tilstedeværelse av vann er imidlertid den faktoren som har størst påvirkning på levetiden for sikringsmidler, konstruksjoner og installasjoner i tunneler. Vannlekkasjer i tunnel kan medføre store utfordringer på flere områder. De kan føre til grunnvannssenkning og setninger i området rundt tunnelen, korrosjon på skinnegangen, problemer med elektriske anlegg, dannelse av vaskesviller, isdannelser i profilet og frostsprengning som fører til nedfall av stein og blokker. Bruk av forinjeksjon er som oftes ikke tilstrekkelig for å unngå fare for drypp og isdannelse, og jernbanetunneler krever i likhet med andre trafikktunneler at det utføres vann- og frostsikring for å ivareta gjeldende funksjonskrav.

I områder med bebyggelse hvor grunnvannssenkning kan medføre setningsskader er det viktig å unngå for store innlekkasjer. Ved tunneldrift skjer det normalt noe endringer i grunnvannstrømningene i bakken. Ofte får ikke dette vesentlige konsekvenser på overflaten. I enkelte tilfeller kan det imidlertid oppstå problemer i form av setninger på overflaten. Dersom det ligger løsmasser over fjellet, og grunnvannsnivået i massene senkes som følge av at man ikke har oppnådd tilstrekkelig lave vannlekkasjer inn i tunnelen, kan det medføre setninger i løsmassene. Dermed vil ev. bygninger som er fundamentert på disse løsmassene kunne få skadelige setninger som følge av poretrykksreduksjonen. I områder hvor det vurderes å være fare for setninger anbefales å sette ut poretrykksmålere for å kunne følge med på eventuelle endringer i poretrykket, og dermed kunne sette inn tiltak på et tidlig tidspunkt. Tiltak vil vanligvis bestå av vanninfiltrasjon i grunnen. Som oftest vil borebrønner som senkes noen meter ned i berg virke best. Det settes inn pakning i berget og påføres et moderat vanntrykk i forhold til overflaten.

Tillatt mengde innlekkasje i tunnelen angis som liter per minutt per 100 m tunnel. Det er ingen generelle krav til tillatt mengde innlekkende vann, dette fastsettes av det enkelte tunnelprosjekt. Tiltak som bør utføres i forkant av utbyggingen for å forhindre setningsproblemer på grunn av vannlekkasjer og eventuelt fastsettelse tetthetskrav er beskrevet i kapittel Forundersøkelser.

For beskrivelse av forinjeksjon, se Nff Håndbok 06 Praktisk forinjeksjon for underjordsanlegg

Historikk vann- og frostsikring

Det er ca. 700 jernbanetunneler i berg i Norge, og de aller fleste er bygget uten noen form for systematisk vann- og frostsikring. De eldre tunnelene ble bygget enkelt, og tradisjonelle tiltak mot vann og is var mekanisk fjerning av is, isnisjer, utmuring, betongelementer, bølgeblikk, steinull, treverk og varmekabler. Lieråsen og Finsetunnelen er ustyrt med frostporter som åpnes og lukkes automatisk ved togpasssering og skal hindre gjennomtrekk.

Fra midten av 1980-tallet ble følgende tunneler bygget:

Åpningsår Tunnel (lengde), banestrekning Vannsikringsløsning
1987 Trollkona (8043 m), Bergensbanen Ubeskyttet PE-skum (4000 m2)
1988 Langemyr (410 m), Sørlandsbanen Ubeskyttet PE-skum (1000 m2)
1990 Kvalsåsen (5023 m), Bergensbanen Ubeskyttet PE-skum (750 m2)
1993 Finsetunnelen (10589 m), Bergensbanen Ubeskyttet PE-skum (8500 m2)
1995 Kjølstad A (144 m), Østfoldbanen Ubeskyttet PE-skum (2500 m2)
1995 Kjølstad B (510 m), Østfoldbanen Ubeskyttet PE-skum (7000 m2)

I perioden 1985-1995 ble hvelv av ubeskyttet PE-skum anvendt som primærløsning for vann- og frostsikring i nye jernbanetunneler. Fra 1996 ble det ikke tillatt å benytte ubeskyttet PE-skum som primærløsning. Basert på en risikovurdering utført av DNV i 1996 ble det angitt maksimal størrelse på felt og minimumsavstand mellom felt av ubeskyttet PE-skum. Denne rapporten ble oppdatert i 2020.

Hvelv av betongelement ble fra 1995 tatt inn som aktuell vannsikringsløsning i regelverket sammen med hvelv av armert sprøytebetong (brannbeskyttet PE-skum), og følgende tunneler ble bygget i perioden 1998-2011:

Åpningsår Tunnel (lengde), banestrekning Vannsikringsløsning
1996 Mølleåsen (1677 m), Østfoldbanen Brannbeskyttet PE-skum (på knøl)
1996 Stavengåsen (910 m), Østfoldbanen Brannbeskyttet PE-skum (på knøl)
1998 Bekkedalshøgda (1656 m), Gardermobanen Betongelementhvelv
1999 Gråskallen (2710 m), Bergensbanen Brannbeskyttet PE-skum (på knøl)
1999 Romeriksporten (14 580 m), Gardermobanen Betongelementhvelv
2005 Tanumtunnelen (3590 m), Askerbanen Hvelv av brannbeskyttet PE-skum
2005 Skaugumtunnelen (3790 m), Askerbanen Hvelv av brannbeskyttet PE-skum
2011 Jarlsbergtunnelen (1750 m), Vestfoldbanen Hvelv av brannbeskyttet PE-skum
2011 Bærumstunnelen (5500 m), Askerbanen Hvelv av brannbeskyttet PE-skum

For tunnelene Gevingåsen og Fellesprosjektet E6-Dovrebanen ble det valgt bergnære vannsikringsløsninger. I Gevingåsen tunnel ble ca. halvparten av tunnelen vannsikret med sprøytbar membran og halvparten av tunnelen med hvelv av brannbeskyttet PE-skum. For tunnelene på Fellesprosjektet E6-Dovrebanen ble kontaktstøp valgt som vannsikringsløsning.

Åpningsår Tunnel (lengde), banestrekning Vannsikringsløsning
2011 Gevingåsen tunnel (4400 m), Nordlandsbanen Hvelv av brannbeskyttet PE-skum og sprøytbar membran
2015 Morstua (190 m), Molykkja (620 m) og Ulvintunnelen (3998 m), Dovrebanen Kontaktstøp

Fra 2013 ble sprøytbar membran og kontaktstøp tatt inn som aktuelle løsninger i Teknisk regelverk.

I perioden 2016-2022 ble følgende tunneler bygget:

Åpningsår Tunnel (lengde), banestrekning Vannsikringsløsning
2016 Holmestrandsporten (12 385 m), Vestfoldbanen Betongelementhvelv (et lite parti med sprøytbar membran)
2017 Brennhågen tunnel (830 m), Ofotbanen Brannbeskyttet PE-skum
2018 Nøklegårdtunnelen (3880 m), Vestfoldbanen Betongelementhvelv
2018 Storbergetunnelen (4731 m), Vestfoldbanen Betongelementhvelv
2018 Langangentunnelen (625 m), Vestfoldbanen Betongelementhvelv
2018 Kleivertunnelen (3713 m), Vestfoldbanen Betongelementhvelv
2018 Eidangertunnelen (2063 m), Vestfoldbanen Betongelementhvelv
2020 Ulriken tunnel, nytt løp (7800 m), Bergensbanen Plastmembran med sprøytebetong
2022 Blixtunnelen (19 500 m), Follobanen Segmenter

Tunneler under bygging:

Åpningsår Tunnel (lengde), banestrekning Vannsikringsløsning
2025 Drammen-Kobbervikdalen (6000 m), Vestfoldbanen Kontaktstøp
2025 Nykirke-Barkåker (900 m og 2300 m), Vestfoldbanen Kontaktstøp
2025 Sandbukta-Moss-Sjåstad (2300 m og 2700 m), Østfoldbanen Kontaktstøp
2027 Hestnestunnelen (3100 m), Dovrebanen Oppnå tilstrekkelig tetthet gjennom forinjeksjon

Vann- frostproblematikk

Direkte drypp og rennende vann som treffer konstruksjonselementer av betong eller stål medfører raskt skader, og er ikke ønskelig i jernbanetunneler. Generelle fuktutslag i vegger og vann som kommer inn i tunnelen i sålen anses imidlertid ikke å være av betydning for driften av tunnelen. Foruten rene drypp på utstyr, er det kombinasjonen fritt vann og frost som skaper de store driftsutfordringene. Oppbygging av is som innsnevrer profilet danner istapper eller vokser inn i sporet, kan forårsake avsporing og representerer en betydelig sikkerhetsrisiko. Dette krever mye manuelt og mekanisk arbeid i den kalde årstiden.

De vanligste metodene for vannsikring kan deles i to hovedgrupper:

  1. Frittstående konstruksjoner (hvelv av betongelementer og PE-skum)
  2. Konstruksjoner i direktekontakt med bergsikringen (kontaktstøpt betonghvelv med membran og vanntett sprøyteebeongkledning)

Vanntrykk

Det blir ofte påpekt og advart mot konsekvensene av oppbygging av høyt vanntrykk inn mot vannsikringsløsninger i direktekontakt med bergsikringen. Teoretisk høyeste vanntrykk baseres på avstanden fra grunnvannsspeilet til tunnelheng, og gjennom naturlige og sprengningsinduserte sprekker i bergoverflaten finner vannet nye veier fra en membrantett tunneloverflate til den åpne sålen med installert drenering. Det er gjennom feltforsøk målt en svak til moderat trykkoppbygging bak membraner, men ikke trykk nær teoretisk høyeste vanntrykk, eller trykk som kan ventes å skade konstruksjonen. Alt tyder på at vannet tar «minste motstands vei» gjennom bergets sprekkesystem fram til den drenerte sålen. Bergets oppsprekking i sprengningsskadesonen, de første ca. 20-40 cm fra den sprengte konturoverflaten, har vist seg å ha en betydelig drenerende (vanntrykksavlastende) effekt.

I helt tette (udrenerte) tunneler er det i Europa lang erfaring og praksis med at den indre kledningen dimensjoneres for å kunne ta opp maksimalt teoretisk vanntrykk. Blixtunnelen er bygget etter dette prinsippet med betongsegmenter i hele tunneltverrsnittet.

Det er ikke funnet eksempler på at det har oppstått skader som følge av vanntrykk i drenerte tunneler med membraner. Over tid vil det sannsynligvis felles ut mineraler og avsettes leirpartikler i sprekkene inn mot tunnelen slik at drenasjekapasiteten mot sålen reduseres. Dette vil kunne medføre noe høyere vanntrykk inn mot membranen over tid.

For løsningen med permanent sprøytebetongkledning vanntettet med sprøytbar membran er det avdekket at endringen i permeabilitet inn mot membranen, og det faktum at hele kledningskonstruksjonen har en betydelig vanndamppermeabilitet, gjør det svært usannsynlig med en trykkoppbygging som kan skade bergsikring eller membranen. Skulle det likevel skje at trykket blir så stort at det begynner å deformere den fiberarmerte sprøytebetongen, forventer man at konsekvensen vil være at det åpner seg et riss og det dannes en fuktflekk. Det vil ikke være betydelige vannmengder da disse er håndtert under tunneldrivingen ved hjelp av forinjeksjon. Det vil derfor være liten sannsynlighet for at det skal løsne og falle ned fragmenter av sprøytebetong som vil ha betydning for sikkerheten i tunnelen.

Frost

Selv om det tradisjonelt har vært vanlig å integrere vannavskjerming og frostisolasjon i samme løsning som én felles installasjon, er det viktig å være bevisst på de ulike funksjonskravene. De aller fleste norske bergarter tåler frost på en god måte, og kjente problemer i jernbanetunneler er knyttet til fritt vann i tunnelrommet (oppbygging av is), og ikke frostsprengning. Dersom vannet ikke trenger gjennom en kombinert bergsikring og vannavskjerming, er det i Norge ikke funnet eksempler på problemer som følge av at vann eventuelt fryser inne i berget eller i bergsikringen.

Frittstående konstruksjoner må enten isoleres slik at vannet ikke fryser i hulrommet mellom bergsikringen og hvelvet, eller så må hvelvet dimensjoneres for å kunne ta opp de maksimale islaster som vil kunne bygges opp mellom bergsikring og hvelv. I praksis er det det første man tradisjonelt har gjort, med tillegg av kapasitet for å kunne ta blokknedfall som følge av mulig sviktende bergsikring. Dette som en kompensasjon for manglende og uønskede visitasjonsmuligheter, og som et resultat av ulykken i veitunnelen Hanekleiva i Vestfold.

Problemstillingen rundt frost må også knyttes opp mot varmevekslingen mellom berget og vannsikringsløsning/bergsikring. Det er etablert gode regnemodeller for å vise nullisotermens (frysepunktets) bevegelse innover i konstruksjonen ved temperatursvingninger på konstruksjonens overflate. Målinger i felt og laboratorier har vist at sprøytebetong og betong i denne sammenheng har en betydelig isolasjonsevne. Denne kan også forbedres betydelig ved å benytte spesielle mørtler med god isolasjonsevne.

Gjennom et doktorgradsarbeid på sprøytebetongkledning vanntettet med sprøytbar membran ved NTNU støttet av både Bane NOR og Statens vegvesen har man kommet langt i arbeidet med å lage en beregningsmodell for frostpåvirkning av konstruksjoner i tunnel basert på tidsserier av meteorologiske observasjoner. Dagens svært enkle metode basert på timegrader og tabellariske verdier for 100-års frost per kommune gir sannsynligvis for konservative verdier, med den følge at man isolerer betydelig større områder av tunnelen enn nødvendig. Betydningen av dette for de fire løsningene som per i dag er i bruk av Bane NOR er ulik. For hvelv av PE-skum betyr dette mest sannsynlig at man kunne ha erstattet PE-skumplatene med en dukmembran påsprøytet armert betong over lange strekninger. Denne metoden har ikke noen stor utbredelse i Norge, men benyttes i mange veitunneler i Sverige. For betongelementhvelv betyr dette at man kan redusere omfang med isolasjon på baksiden av elementene. I mange tilfeller kan isolasjon unngås helt.

For løsningen med kontaktstøpt betonghvelv med membran foreligger det lite vitenskapelig materiale rundt problemstillingen med frost. Det er ikke kjent at det har forekommet skader i slike konstruksjoner på grunn av frost ved betongtykkelser på minimum 30 cm. Selve membranen vil ikke få varig skade av frysing, men den vil bli mindre elastisk når temperaturen er under null grader. Det forutsettes at ekspandert volum av frosset vann finner minste motstands vei inn i berget og langs med drenssjiktet, og at det derfor vil være et begrenset trykk som bygger seg opp ved evt. frysing av drensjiktet og bakenforliggende vannmettet sprøytebetong. I forbindelse med byggingen av Ulvintunnelen (2012-2015) i Eidsvoll er det montert termiske sensorer i konstruksjonen for å skaffe mer kunnskap om frostinntrenging i denne type konstruksjon, og eventuell virkning av dette.

Gjennom doktorgradsarbeidet på sprøytebetongkledning vanntettet med sprøytbar membran, er løsningen vitenskapelig og teknisk dokumentert med hensyn på membranmaterialet, samvirket med bergsikring og forholdet til det tilbakeholdte vannet i berget og frost. Membranens egenskaper ved frostpåvirkning er en av faktorene som har vært undersøkt. Det er påvist at membranens elastisitetsegenskaper svekkes vesentlig hvis den utsettes for temperaturer lavere enn -3 °C. Syklisk frysing/tining ved minimumstemperatur -3 °C gir ingen vesentlig svekkelse av membranens in-situ strekkfasthet til grenseflatene mot sprøytebetongen. Membranen er ikke damptett, og det gjør at bergsikringen (sprøytebetongen) får en meget god in-situ frostbestandighet pga. den lave vannmetningsgraden av både betong- og membranmaterialet. Det er likevel grunn til å være oppmerksom på problemstillingen og gjøre beregninger for å anslå hvor nært tunnelmunningen løsningen bør benyttes i enkleste utførelse med standard 6 cm sprøytebetongoverdekning. For å bedre isolasjonsevnen kan man gå over til en dekkbetong med bedre isolasjonsevne (lavere varmeledningstall), eller øke tykkelsen på sprøytebetong.

Ulike vannsikringsløsninger

Hvelv av PE-skum brannbeskyttet med armert sprøytebetong (sprøytebetonghvelv)

Vann- og frostsikring med PE-skumplater og sprøytebetong har vært den dominerende løsningen i mange år, både for vei- og jernbanetunneler. Konstruksjonen består typisk av 50-60 mm PE-skum (tykkelse varierer avhengig av frostmengde) som monteres i styrt profil utenfor normalprofilet ved hjelp av bergbolter, typisk ø16 mm, cc 1,2 m x 1,2 m, og omtales da som sprøytebetonghvelv. For jernbanetunneler med høye hastigheter er bolteinnfesting typisk økt til ø20 mm og cc 1,0 m x 1,2 m. PE-skummet brannbeskyttes med minimum 80 mm nettarmert sprøytebetong. Sprøytebetongen tilsettes PP-fier (2 kg/m3) for å øke brannbestandigheten. Konstruksjonen føres ned mot tunnelsålen slik at lekkasjevann føres sikkert ned til drensgrøfter. Det etableres dilitasjonsfuger med 30 m innbyrdes avstand rundt hele profilet for kontrollert opptakelse av bevegelser som følge av temperaturvariasjoner i sprøytebetongen.

PE skum hvelv.PNG

Figur 1: Sprøytebetonghvelv. Detalj.

Hvelv av betongelementer

Konstruksjonen består av frittstående prefabrikkerte betongelementer med tykkelse 200 mm med heldekkende membran på fjellsiden som vannsikring. Konstruksjonen isoleres ved behov. PP-fuber tilsettes for å hindre/redusere avskalling av betong ved brann.

Betongelementhvelv.PNG

Figur 2: Betongelementhvelv. Detalj.

Kontaktstøpt betonghvelv med membran

Løsningen er i direkte kontakt med berget. Membran monteres på avrettet underlag, og med fiberduk som beskyttelse for å unngå rifter og skader i membran. Deretter etableres en kontinuerlig kontaktstøp med tykkelse 300 mm. Løsningen er ikke isolert. Frostsprengning anses ikke å være noe problem da betongutstøpingen vil være tørr og uten mating av vann, se beskrivelse om frost i kap.4 Vann- og frostproblematikk i veileder for konstruksjonsprinsipp.

Kontaktstøp.PNG

Figur 3: Kontaktstøpt betonghvelv med membran. Detalj.

Sprøytebetongkledning vanntettet med sprøytbar membran

Løsningen består av en komposittkonstruksjon med sprøytebetong og vanntett sprøytbar mmbran. Membranen befinner seg mellom to lag av sprøytebetong. Før membran kan påføres må overflaten av sprøytebetong til bergsikring jevnes ut. Vannlekkasjer og fuktflekker må temporært dreneres. Dete gjøres med 10 mm diameter drenshull, lengde ca. 20-30 cm forsynt med drensplugger. Disse injiseres etter at membranen er påført og herdet.

Membranen kan bli svekket av gjentagende frostsykluser. Dette gjør at metoden i enkleste utførelse ikke uten videre bør brukes ved minimumstemperatur lavere enn -3 °C ved membranens posisjon. Dette kan håndteres ved å dimensjonere dekksjiktet tykkere, eller ved å benytte en mørtel som har en betydelig lavere varmeledningsevne enn standard sprøytebetong.

Sprøytebetongkledning.PNG

Figur 4: Sprøytebetongkledning vanntettet med sprøytbar membran. Detalj.

Vann- og frostsikring i trafikksatt tunnel

I konstruksjonens levetid utføres vedlikehold i henhold til generiske arbeidsrutiner. Feil og mangler som oppdages under inspeksjon skal utbedres eller holdes under oppsikt avhengig av feiltype og alvorlighetsgrad.Erfaring fra norske jernbanetunneler som viser at vedlikeholdskostnader for tunnelene i hovedsak er knyttet til installasjoner og iskjøving. Forhold som totalt tilsier mindre vedlikehold i tunneler enn for fri linje er mindre utstyr og fravær av kontaktledningsmaster. Dette er markant forskjellig fra veisektoren der store deler av vedlikeholdskostnadene er knyttet til renhold og kontroll av teknisk utstyr.

De fleste av de eldre jernbanetunnelene har et tunneltverrsnitt som gir minimalt med rom for å bygge inn vannsikringsløsninger.

Valg av metode styres av ulike egenskaper ved tunnelen. Disse må kartlegges som grunnlag for å velge metode for vann- og frostsikring:

Parameter Beskrivelse
Vannmengde
  • Varierer over årstider. Dette må tas i betraktning ved kartlegging.
  • Enkelte metoder er sårbare for større vannmengder under installasjon.
Spredning av lekkasjepunkter
  • Flekkvis: Sikring kan utføres lokalt og på små felt.
  • Seksjoner: Hele profilet sikres seksjosnvis.
  • I frostsone bør seksjonsvis avskjerming velges
Frostmengde
  • Dimensjonerende frostmengde/belastning må bestemmes
  • Vannavskjerming med membraner har varierende isolasjonsevne. Vesentlig å hindre konveksjon/luftlekkasjer ved å tette kanter.
  • Ved åpninger/luftlekkasjer vil frost kunne fryse vannet bak vannavskjermingen og belaste denne til brudd.
  • Vedvarende vanntilstrømning kan tilføre varme og hindre frysing selv ved begrenset isolasjonsevne for vannavskjermingen.
  • Det er begrenset erfaring med bruk av sprøytede vanntettingsmembraner i frostsonen. Membranens elastisitetsegenskaper svekkes vesentlig dersom den utsettes for temperaturer lavere enn –5°C. Syklisk frysing/tining ved minimumstemperatur gir imidlertid ingen vesentlig svekkelse av membranens in-situ strekkfasthet til grenseflatene mot sprøytebetongen.
  • Klimatiske og topografiske forhold kan gi kontinuerlig luftstrømning i en retning og lang frostsone i en ende samt begrenset eller ingen frost i den andre enden.
  • Retningsdrift kan gi asymmetrisk frostinntrengning.
  • Hvite tider/trafikkstans kan endre trekkretning.
Profil, avstand fra berg til trafikkprofil
  • Vesentlig utfordring for trafikksatte tunneler. Krever skanning for kontroll. Skaff kontroll over toleranser som kvalitet av oppmåling, løfteskjema, overhøyde, KL.
  • Fremtidige krav til profil.
  • Plass for bergsikring.
  • Byggehøyde for vannavskjerming varierer fra 3-30cm.
  • Stor bergruhet og stort luftvolum bak vannavskjermingen vil øke belastningen på vannavskjermingen ved trykk/sug.
Tunnellengde
  • Påvirker frostsone.
  • Påvirker effektivitet ved montering. Logistikk kan begrense antall angrepspunkter ved større prosjekt. Kan styre valg av løsning.
Geologi og bergsikring
  • Lastpåkjenning fra vannavskjerming. Statisk og dynamisk.
  • Tilstand for geologi og bergsikring må kartlegges før installasjon av vannavskjerming.
KL og andre installasjoner
  • Kl og andre installasjoner må beskyttes/demonteres ved påføring av sprøytbare vannavskjermingsløsninger.
  • Membranløsninger kan monteres uten demontering av KL. Avveies mot framdrift.
  • Vurder vannavskjerming ved fornying av KL.
  • Ved planlagt fremtidig fornying av KL-oppheng bør valg av avskjerming avstemmes mot KL-system.
  • Valgt avskjerming kan gi redusert fleksibilitet for andre installasjoner.
Fremføringshastighet. Fremtidig økning
  • Høy hastighet gir behov større profil; Dynamisk lastprofil, trykk/sug-krefter.
  • Økt hastighet kan påvirke krav knyttet til KL.
Disponering og brudd
  • Hvilke tidsluker er tilgjengelig for montasje av vannavskjerming? Metodene skiller sterkt i behov for luker for kontinuerlig montering.
  • Er det planlagt brudd som kan brukes, og hvilken tilgang til å stenge tunnel finnes ved brudd? Deles tiden med annet arbeid?
  • Sprøytede løsninger kan kreve frostfri/tørre forhold. Montering om vinteren kan være ugunstig.
Levetid for tunnel
  • Hva er forventet levetid for tunnelen?
Generell tilstand for tunnel. Nært forestående fornyelse?
  • Vil tunnelen gjennomgå fornyelse i nær fremtid? Kan vannavskjerming utsettes?
Tilgjengelighet, geografisk
  • Er tunnelen vanskelig tilgjengelig ved tilkomst uten sportilgang?
Brann
  • Er det spesielle forhold knyttet til brann?
  • Er det signal i tunnel som kan føre til at tog stopper i tunnelen? Begrenser valg av løsninger.
Ioner, vannkjemi, utfelling
  • Er lekkasjevannet korrosivt?
  • Transporterer vannet materiale som avsettes i tunnel?
Omdømme
Sårbare resipienter, avrenning
  • Kan påvirke valg av sprøyteprodukter eller injeksjonsmaterialer.
Aksept for nye løsninger/trygt og gjennomprøvd
  • I hvilken grad aksepteres løsninger som ikke er fullt utprøvd for case.
Overdekning
  • Enkelte løsninger kan utføres fra overflate der overdekningen er liten.
  • Ved lav overdekning kan lekkasjevannet ha lave temperaturer
  • Berget kan ha lave temperaturer ved liten overdekning

Teori

Lekkasjevann

Flertallet av tunnelene ligger under normalt grunnvannsnivå. Det vil dermed alltid være et vanntrykk mot tunnelen. Trykket kan til dels bli høyt hvis vannet møter innskrenkninger. Bergvolumet rundt tunneler er oppsprukket i et uforutsigbart mønster. Avhengig av vær og sesong vil vannmengde og lekkasjevei variere. Vannets temperatur vil variere, men vil vanligvis være fra 0-6 °C. Trykksatt vann kan være underkjølt. Lekkasjevannet inneholder en varmemengde som kan være gunstig for å unngå frysing. Dermed kan selv en begrenset isolasjonsevne hos vannavskjermingen gi en frostfri løsning gitt gode tiltak for å hindre konveksjon.

Trykk/sug

Avstand mellom tog og tunnelvegg er kort. Toget fyller en vesentlig del av tverrsnittet i tunnelen. Dette fortrenger store mengder luft som gir vesentlige trykk- og sugpulser. Kreftene øker ved økt hastighet og små profilmarginer. Vannavskjermingsløsninger bør utføres lufttett for å hindre konveksjon. Dermed vil luftvolum bak vannavskjermingen komprimeres/ekspandere og belaste vannavskjerming og innfesting av denne. Sammenlignet med veitunneler er disse kreftene vesentlig større. Dermed kan ikke aksepterte løsninger for veitunneler direkte overføres til jernbanetunneler. Produkter/system må dimensjoneres for makslaster og lastvekslinger for å unngå utmatting.

Brann

Produkter må tilfredsstille strenge krav til brannmotstand, giftighet av branngass og drypp av brennende dråper. Dagens aksept av ubeskyttet PE-skum er begrenset i areal og at tog ikke kan stanse på signal der PE-skum er montert.

Frost

I tunnelportalene vil tunnelluft ha minusgrader. Denne frostsonen kan beregnes, men beregningsmodellene og grunnlagsdata for disse er grove. For eksisterende tunneler er erfaringer fra drift en verdifull kilde til å definere frostsone. Frostsonen i hver ende av en tunnel lengre enn 1 km vil ofte være ulik.

Lekkasjevann må hindres i å fryse bak avskjermingen. Der vannet fryser kan frostsprengning ødelegge avskjermingen eller denne presses ut i trafikkprofilet. Is kan også belaste avskjermingen til brudd. Det er vesentlig å hindre konveksjon ved å lage en lufttett kant på avskjermingen. Trykk/sug-pulser kan likevel forventes å gi noe sirkulasjon av luft bak vannavskjermingen.

Membraner for vannavskjerming har ulik grad av isolasjonsevne. Membraner med lav isolasjonsevne kan fungere tilfredsstillende der konveksjon elimineres og der lekkasjevannet tilfører tilstrekkelig varme. Isolasjonsbehov må prosjekteres.

Montering av PE-plater kan normalt monteres i isfrie perioder. Det er derfor viktig at områder med isdannelser merkes om vintrene for å sikre at platene senere blir montert på riktig plass.

Frostisolasjonen dimensjoneres i henhold til frostmengden på stedet. Ved fastsettelse av dimensjoneringskriteriet legges frostmengden F100 (h0C) til grunn. Kart over frostmengder finnes i Statens vegvesens håndbok N200: Frostmengde F10 og F100

Forholdet mellom frostmengde og nødvendig isolasjonstykkelse er vist i figuren:

Fig522-411.png

Figur 5: Forholdet mellom dimensjonerende frostmengde og krav til isolasjonstykkelse.

Ioner

Lekkasjevannet kan transportere mineraler og salter som avsettes på komponenter. Dette kan gi korrosjon, degradere materialer, føre til krypstrømmer, redusere isolasjonsevne og tynge ned komponenter slik at disse mister sin funksjon eller kommer i konflikt med trafikkprofilet/KL-anlegget. Ved valg av avskjermingsløsning må denne tilpasses den vannkjemi tunnelen har.

Aktuelle metoder

Vannavskjerming kan listes under følgende hovedkategorier:

  1. Membran
  2. Hvelv
  3. Sprøytbar membran på berget
  4. Injeksjon
  5. Drenering av bergmasse/tiltak fra dagen

Membraner består av vanntette duker av ulik tykkelse som henges opp mot fjellet med minimal avstand til fjell. Byggehøyde for tynne duker med begrenset frostisolasjon er 2-10cm. Kombinasjon av monteringsergonomi, brannegenskaper, levetid og mekanisk styrke gjør at det er få tilgjengelige produkter av denne kategori. Sandwich-produkter kan gi akseptable løsninger, men levetid for produkter brukt i dag har vært for kort. Det forventes at nye Sandwich-produkter som tilfredsstiller krav blir tilgjengelig innen kort tid.

Membranløsninger har for det meste en smidig montasje uten bruk av store maskiner og krav til lang disponeringstid. Det kan forventes en akseptabel fremdrift ved arbeidsluker på 2-3 timer. Isolerte membraner har til nå vært av PE-skum. Denne har uakseptable brannegenskaper og kan bare benyttes i små mengder der tog ikke stanser på signal. TRV beskriver krav til bruk av PE-skum. Det forventes at det blir tilgjengelig isolerende membran med akseptable egenskaper innen kort tid.

Hvelv. Løsningen består av betongelementer eller PE-skum montert med avstand til tunnelvegg. PE-skum brannbeskyttes med sprøytebetong. Løsningen tar stor plass, typisk 50-100 cm og har stiv geometri. Den ansees som uaktuell for de fleste eksisterende tunneler. Den vil kreve total demontering av objekter på vegg og tak.

Sprøytede vannavskjerminger. Løsningen består av et system av vanntett produkt og betong som sprøytes på tunnelveggen. Det er liten erfaring med bruk av dette ved rehabilitering og metoden er generelt umoden. Det har til nå vært utfordrende å benytte denne metoden ved våte forhold. Byggehøyde er fra 6-20cm. Prosessen fører til søl som krever demontering eller robust beskyttelse av KL og andre objekter. Metoden krever arbeidsluker på dager til uker der KL må beskyttes. Metoden har også krevende logistikk.

Injeksjon. Vanntettende produkt, sementbasert eller polymerere trykkes inn i sprekkesystem gjennom borede hull. Metoden er i utstrakt bruk ved bygging av tunneler, med en vesentlig forskjell at bergrommet tettes før det sprenges ut. Etterinjeksjon (injeksjon etter at bergrommet er sprengt ut) har tradisjonelt levert svake resultater, samtidig har det vært en utvikling i materialer og metoder. Erfaringer med metoden er at lekkasjer flytter på seg og at det er behov for mange runder før ønsket resultat oppnås. Metoden krever borerigg for berg, og pumpe for injeksjonsmasse. Den er likevel relativt smidig der det er mulig å veksle inn og ut fra sporet nær tunnel. Luker på 3-4t kan benyttes. Metoden er likevel tidkrevende med lav produksjon. Metoden har tidligere skapt vesentlige omdømmeskader, selv om teknologi og materialer har utviklet seg. Det er også viktig å ha kontroll på bergsikringen ved injeksjon. Injeksjonstrykk eller vanntrykk etter utført injeksjon kan påkjenne berget og føre til nedfall .

Drenering av bergmasse. For enkelte svært lokale og store lekkasjer kan det være egnet å bore dreneringsbrønner og samle opp lekkasjen i lukket drenering. Ofte må dette kombineres med injeksjon. Metoden er lite brukt, men kan ha sin nisje. Ved aktiv drenering er det viktig å vurdere om endret grunnvannstand kan ha negative konsekvenser for omgivelsene.

Metoder utført fra overflate over tunnel. Det bør vurderes om tiltak i dagen kan redusere vannlekkasjer. Dette kan gjøres ved å etablere/vedlikeholde dreneringsanlegg oppstrøms tunnel. Det kan også være mulig å etablere tett membran over løsmassetunneler. Dette er mest aktuelt der grunnvannsnivået er lavt i forhold til tunnel. Det er gjort forsøk med å wire-sage slisser for å avskjære vannstrøm inn mot tunnel og drenere slissene til frostsikker drenering. Ved slik wire-saging er det vesentlig å ha kontroll på bergsikringen. Injeksjon kan utføres fra dagen der overdekning er lav.

Type Beskrivelse Tykkelse/plassbehov Fordeler Ulemper
PE-skum brannbeskyttet med sprøytebetong Matter av PE-skum som monteres mot bergoverflaten og dekkes med sprøytebetong. Ca. 20-30 cm avhengig av krav til frostmotstand (tykkelse på PE-plater) Godkjent løsning, velprøvd og med god effekt. Også egnet i frostsonen Demontering/tildekking av KL-anlegg. Relativt plass- og tidkrevende. Vil som regel kreve strossing av berg og et lengre brudd>2-3uker
Ubeskyttet PE-skum Matter av PE-skum som monteres mot bergoverflaten Ca. 10-20 cm avhengig av krav til frostmotstand (tykkelse på PE-plater) Fleksibel og rask metode. Strossing ikke alltid nødvendig. Trenger ikke demontering/tildekking av KL. Også egnet i frostsonen Tilfredsstiller ikke brannkrav. Begrensinger i feltstørrelse, avstand mellom felt og plassering ift. hovedsignal jf. Teknisk regelverk. Kan ikke settes opp der tog kan bli stående på signal.
Plastmembraner Plastmembran med brannhemmende egenskaper > 5 cm Fleksibel og rask metode. Egnet i trange partier. Trenger ikke strossing og demontering/tildekking av KL. Sjeldent egnet i frostsonen. Usikkerheter knyttet til levetid og kapasitet ift. trykk/sug krefter.
Injeksjon («etterinjeksjon») Boring av hull i berg som injiseres med ulike kjemiske komponenter Ingen Ingen komponenter som krever vedlikehold, men lekkasjer kan gjenoppstå over tid. Usikkert resultat. Best egnet for mindre felt og definerte sprekker med konsentrerte lekkasjer. Tidkrevende. Vanskelig å oppnå tilstrekkelig tetthet. Må ofte suppleres med andre løsninger.
Injiserbare bolter («Thor-bolt o.l.) Bergsikringsbolter som kan injiseres med sementbaserte injeksjonsmidler Ingen Bergsikringsbolt egnet for boltehull som «renner» I utgangspunktet en bergsikringsbolt for bruk boltehull med større vannlekkasjer. Kan muligens være egnet for tetting små og konsentrerte lekkasjer.