Tunnel/Tunnelløsning: Forskjell mellom sideversjoner
(Fra rammeverket) |
(Tatt inn litt bakgrunnsstoff om valg av kriterier for tunnelløsning) |
||
Linje 34: | Linje 34: | ||
Dette tilsier valg av ettløpstunneler for kortere tunneler, mens toløpstunneler blir mest gunstig for lange tunneler, spesielt der hvor det er langt fra tunnel ut i dagen. | Dette tilsier valg av ettløpstunneler for kortere tunneler, mens toløpstunneler blir mest gunstig for lange tunneler, spesielt der hvor det er langt fra tunnel ut i dagen. | ||
== Erfaringer fra andre land | = Valg av tunnelløsning = | ||
Valg av tunnelkonsept gjøres på bakgrunn av følgende kriterier: | |||
# Dimensjonerende trafikk | |||
# Beliggenhet | |||
# Økonomi | |||
Sikkerhetsmessig vil tunnelløsningene tilfredsstille dagens krav til sikkerhet. TSI SRT godtar løsningene på lik linje. Sikkerhetsforskjellene for ett kontra to løp er helt marginale. På strekninger med vesentlig mengde godstrafikk kan forskjellen i sikkerhet være signifikant. | |||
== Dimensjonerende trafikk == | |||
Dimensjonerende trafikk danner også grunnlaget for tunnelens RAM-krav eller tilgjengelighets- krav. Vedlikehold av tunnelen (generiske arbeidsrutiner) må utføres i hvite tider for å sikre at trafikken ikke blir berørt (kapasiteten opprettholdes). | |||
Vedlikeholdstilgjengelighet må vurderes. Ved ett løp vil man legge opp til arbeid i ett spor og sam- tidig trafikk i nabospor. I en toløpstunnel stenger man ett løp, og må avvikle trafikken begge veier i det andre løpet, riktignok med full hastighet. | |||
Tiltak som kan lette vedlikeholdstilgang i tunnelen under trafikk må identifiseres. Ved to løp vil det være mer utstyr som skal vedlikeholdes. I tillegg vil belastningen utstyret utsettes for i en toløpstunnel være større enn i en ettløpstunnel. En ettløpstunnel gir muligheter for å plassere teknisk utstyr i tilknytning til service-/rømningsveiene slik at adkomst til disse er uavhengig av skinnegående kjøretøy og sportilgang. Vedlikeholdstoget gjør at svært mye sporarbeid kan utføres godt beskyttet ved en ettløpstunnel. | |||
Grenseverdier for togmøte person- og godstog og entring av tunnel: Godstog: Maks. 750 m toglengde og 100 km/t hastighet Persontog: Maks. 250 m toglengde og 250 km/t hastighet | |||
== Beliggenhet == | |||
Geologi og topografi for planlagt tunnel er en viktig faktor for valg av ett og to løp. Hvis det ikke er mulig å få til rømning til det fri eller annet sikkert sted ved rømningsveier for minst hver 1000. meter, må det vurderes service-/rømningstunnel eller to løp. Lav fjelloverdekning kan begrense valg av to løp. | |||
Tilgjengelighet av beredskapspersonell må vurderes. | |||
== Økonomi == | |||
Livsløpskostnadene må vurderes. Kostnader til drift og vedlikehold veies opp mot investerings- kostnader. | |||
= Erfaringer fra andre land = | |||
Tabellene nedenfor viser for hvert land jernbanetunneler over 10 km både i drift og under bygging. Tunnelløsning for tunneler < 10 km er ikke listet opp, men likevel gjennomgått. Andel ettløpstunneler øker med avtagende lengde. For Sverige og Finland er det tatt med alle tunneler over 5 km. | Tabellene nedenfor viser for hvert land jernbanetunneler over 10 km både i drift og under bygging. Tunnelløsning for tunneler < 10 km er ikke listet opp, men likevel gjennomgått. Andel ettløpstunneler øker med avtagende lengde. For Sverige og Finland er det tatt med alle tunneler over 5 km. | ||
Sideversjonen fra 28. jun. 2013 kl. 12:02
__NUMBEREDHEADINGS__
Aktuelle tunnelløsninger
Følgende prinsipielle tunnelløsninger benyttes for dobbeltsporede jernbanestrekninger:
- Ett stort dobbeltsporet løp med rømningsveier til det fri eller annet sikkert sted for minimum hver 1000 m.
- Ett stort dobbeltsporet løp med parallell service-/rømningstunnel med tverrforbindelse for rømning for minimum hver 1000 m.
- To separate enkeltsporede løp med tverrforbindelse mellom disse for hver 500 m.
- To separate enkeltsporede løp med servicetunnel forbundet med rømningsveier mellom tunnelene.
Dette er de samme tunnelløsningene som omfattes av TSI SRT.
Vurdering av tunnelløsningene
Det er gjort vurderinger for både bygge- og driftsfase. Fordeler i byggefase er listet først.
Fordeler med ettløpstunneler:
- Færre arbeidsfronter
- Mindre masser som må fjernes
- Mindre bergoverflateareal for sikring
- Større tverrsnitt gir mindre laster på konstruksjonene
- Enklere å etablere overkjøringssløyfer
- Enklere håndtering av trykkutjevning
- Mindre utstyr som må vedlikeholdes
- Mulighet for å plassere teknisk utstyr i rømningstunneler som ikke krever sportilgang ved vedlikehold
- Lavere trykk- og sugkrefter på installasjoner og konstruksjoner
Fordeler med toløpstunneler:
- Kortere rømningsveier
- Full kapasitet i ett løp ved vedlikehold i det andre løpet
Sikkerhet vurderes likt i en driftsfase på grunn av at tiltakene er tilpasset de ulike løsningene (eks. rømningsveier). Det er imidlertid viktig å se på sikkerhet i drivefasen av tunnelen.
Dette tilsier valg av ettløpstunneler for kortere tunneler, mens toløpstunneler blir mest gunstig for lange tunneler, spesielt der hvor det er langt fra tunnel ut i dagen.
Valg av tunnelløsning
Valg av tunnelkonsept gjøres på bakgrunn av følgende kriterier:
- Dimensjonerende trafikk
- Beliggenhet
- Økonomi
Sikkerhetsmessig vil tunnelløsningene tilfredsstille dagens krav til sikkerhet. TSI SRT godtar løsningene på lik linje. Sikkerhetsforskjellene for ett kontra to løp er helt marginale. På strekninger med vesentlig mengde godstrafikk kan forskjellen i sikkerhet være signifikant.
Dimensjonerende trafikk
Dimensjonerende trafikk danner også grunnlaget for tunnelens RAM-krav eller tilgjengelighets- krav. Vedlikehold av tunnelen (generiske arbeidsrutiner) må utføres i hvite tider for å sikre at trafikken ikke blir berørt (kapasiteten opprettholdes).
Vedlikeholdstilgjengelighet må vurderes. Ved ett løp vil man legge opp til arbeid i ett spor og sam- tidig trafikk i nabospor. I en toløpstunnel stenger man ett løp, og må avvikle trafikken begge veier i det andre løpet, riktignok med full hastighet.
Tiltak som kan lette vedlikeholdstilgang i tunnelen under trafikk må identifiseres. Ved to løp vil det være mer utstyr som skal vedlikeholdes. I tillegg vil belastningen utstyret utsettes for i en toløpstunnel være større enn i en ettløpstunnel. En ettløpstunnel gir muligheter for å plassere teknisk utstyr i tilknytning til service-/rømningsveiene slik at adkomst til disse er uavhengig av skinnegående kjøretøy og sportilgang. Vedlikeholdstoget gjør at svært mye sporarbeid kan utføres godt beskyttet ved en ettløpstunnel.
Grenseverdier for togmøte person- og godstog og entring av tunnel: Godstog: Maks. 750 m toglengde og 100 km/t hastighet Persontog: Maks. 250 m toglengde og 250 km/t hastighet
Beliggenhet
Geologi og topografi for planlagt tunnel er en viktig faktor for valg av ett og to løp. Hvis det ikke er mulig å få til rømning til det fri eller annet sikkert sted ved rømningsveier for minst hver 1000. meter, må det vurderes service-/rømningstunnel eller to løp. Lav fjelloverdekning kan begrense valg av to løp.
Tilgjengelighet av beredskapspersonell må vurderes.
Økonomi
Livsløpskostnadene må vurderes. Kostnader til drift og vedlikehold veies opp mot investerings- kostnader.
Erfaringer fra andre land
Tabellene nedenfor viser for hvert land jernbanetunneler over 10 km både i drift og under bygging. Tunnelløsning for tunneler < 10 km er ikke listet opp, men likevel gjennomgått. Andel ettløpstunneler øker med avtagende lengde. For Sverige og Finland er det tatt med alle tunneler over 5 km.
Tabellforklaring:
- E = enkeltspor, 2E = 2 parallelle enkeltsporede tunneler, D = dobbelspor i ett tunnelløp, +s = separat service- og redningstunnel
- TBM = tunnelen er bygget vha. tunnelboremaskin, konv. = tunnelen er drevet med konvesjonell metode (sprenging)
Sveits
No. | Navn | Lengde (km) | Konsept | Åpningsår | Kommentar |
---|---|---|---|---|---|
1 | Gotthard baseline | 57 | 2E | 2017 | TBM |
2 | Lotschberg base tunnel | 34,6 | E/2E | 2007 | TBM/Konv. |
3 | Vereina | 19 | E/D | 1999 | Enkeltspor |
4 | Furka base tunnel | 15,4 | E | 1982 | Enkeltspor |
5 | Ceneri basistunnel | 15,4 | 2E | 2019 | TBM |
6 | St.Gotthard | 15 | D | 1882 | |
7 | Lötschberg | 14,6 | D | 1913 |
Sveits har ingen klar strategi for valg av tunnelløsning, og valg av løsning gjøres for hvert enkelt prosjekt avhengig av trafikktetthet, lengde og bergforhold. De nye lange alpetunnelene Gotthard og Lotschberg bygges imidlertid som toløpstunneler med hyppige tverrslag i avstand 300-350 m. Ettløpstunneler er det vanlige konseptet i Sveits for mange nyere tunneler på ca. 5-10 km.
Frankrike
No. | Navn | Lengde (km) | Konsept | Åpningsår | Kommentar |
---|---|---|---|---|---|
1 | Mont Cenis | 54 | 2E | 2022 | TBM/Konv. |
2 | Frejus (Mont Cenis) | 13,7 | D | 1871 | Grensetunnel mot Italia |
Til tross for stor satsing på bygging av nye høyhastighetsbaner er det bygget lite nye konvensjonelle jernbanetunneler i Frankrike bortsett fra Kanaltunnelen som er omtalt under Storbritannia. De nye høyhastighetsbanene er bygget med større stigninger og fall enn i de fleste andre land. Dermed har man i stor grad unngått bruk av tunneler.
På den nye LGV Mediterrannée som ble tatt i bruk i 2001 er det totalt 12,5 km med tunneler. Disse er alle ettløpstunneler. Holdningen har imidlertid endret seg, og på linjen Perpignan-Figuerras-Gerona bygges en 8,2 km lange Perthustunnelen som toløpstunneler.
Østerrike
No. | Navn | Lengde (km) | Konsept | Åpningsår | Kommentar |
---|---|---|---|---|---|
1 | Koralm tunnel | 32,8 | 2E | 2016 | TBM |
2 | Wienerwald | 13,4 | 2E/D | 2008 | TBM (11 km) |
3 | Inntal | 12,7 | D | 1994 | |
4 | Lainzer | 12,3 | D/2E | 2008 | Cut&Cover/TBM |
5 | Radfeld-Wiesing | 11,4 | D | 2010 | Delvis TBM |
6 | Arlberg | 10,6 | D | 1884 | |
7 | Stans-Terfens | 10,6 | D | 2008 | |
8 | Brenner basis | 55 | 2E | 2020 | TBM |
De fleste jernbanetunneler i Østerrike har blitt bygget som ettløpstunneler, og dette har vært hovedkonseptet for nye tunneler. Toløpstunneler er kun aktuelt ved tunneler > 20 km. For middels lange tunneler vurderes ett eller to løp for hvert enkelt prosjekt. Det planlegges og prosjekteres flere nye, lange tunneler. Disse blir alle prosjektert som ettløpstunneler.
Tyskland
No. | Navn | Lengde (km) | Konsept | Åpningsår | Kommentar |
---|---|---|---|---|---|
1 | Landrucken | 10,8 | D | 1988 | |
2 | Mundener | 10,5 | D | 1991 |
På høyhastighetsbanen Neubaustrecken er det flere tunneler opp mot 10 km. Disse tunnelene er ettløpstunneler. Her er både gods- og persontrafikk. På den nye strekningen Leipzig-Erfurt-Nurnberg og andre høyhastighetsbaner som bygges for 300 km/h velges det i stor grad ettløpstunneler.
EBA (Eisenbahnbundesamt) har utarbeidet retningslinjer for utforming av jernbanetunneler. Her er det bl.a. spesifisert følgende:
- Tunneler lengre enn 1000 m, og som skal betjene blandet gods- og persontrafikk til samme tid, skal utformes som to separate ettløpstunneler.
- I enkeltsporede tunneler hvor det ene løpet skal tjene som rømningsvei for det andre, skal tunnelløpene være farbare med vegkjøretøy.
Italia
No. | Navn | Lengde (km) | Konsept | Åpningsår | Kommentar |
---|---|---|---|---|---|
1 | Simplon I&II | 19,8 | 2E | 1906/22 | Konv. |
2 | Appennino base tunnel | 18,5 | D | 1934 | Konv. |
3 | Vaglia | 16,8 | D+delvis s | 2009 | Konv. |
4 | Valico | 16,6 | |||
5 | Firenzuola | 15,3 | D | 2009 | |
6 | Monte Santomarco | 15 | E | 1987 | Enkeltsporbane |
7 | Sciliar | 13,2 | D | 1993 | |
8 | Caponero-Capoverde | 13,1 | D | 2001 | |
9 | Peloritana | 12,8 | E | 2001 | Dobling av eksisterende linje |
10 | Bussoloeno | 12,5 | 2E | 2012 | |
11 | Monterotondo | 11,1 | |||
12 | San Donato | 11 | D | 1986 | |
13 | Pianoro | 10,9 | D | 2009 | |
14 | Raticosa | 10,5 | D | 2009 | |
15 | Sant Lucia basis | 10,3 | D | 1977 |
Italia er det landet i Europa med høyest tunnelandel - hele 10 %. Strategien for nye tunneler er ettløpstunneler.
Sverige
Sverige bygger både ettløps- og toløpstunneler. Sverige har lenge hatt et særkrav om rømningsveier for hver 150-200 m da det er Boverket som stiller krav til evakuering fra tunneler. Dette kravet ble beholdt etter at TSI SRT trådte i kraft da denne åpner for at enkeltland kan beholde strengere krav til tunnelsikkerhet enn TSI SRT foreskriver. Hallandsåsen bygges med to separate løp. Det samme gjelder for Citytunnelen under Malmø sentrum. Tunneler på Grødingebanen og Trollhättan-Gøteborg er bygget som ettløpstunneler.
No. | Navn | Lengde (km) | Konsept | Åpningsår | Kommentar |
---|---|---|---|---|---|
1 | Hallandsåstunneln | 8,7 | 2E | 2015 | 63 % TBM, 37 % sprengt |
2 | Citytunneln | 6,0 | 2E | 2010 | TBM + cut and cover |
3 | Citybanan (Stockholm) | 6,0 | 2017 | ||
4 | Namntalltunneln | 6,0 | E | 2009 | Konv. |
5 | Björnböletunneln | 5,2 | E | 2009 | Konv., tas i bruk 2012 |
6 | Arlanda | 5,1 | D | 2000 | Konv. |
Finland
No. | Navn | Lengde (km) | Konsept | Åpningsår | Kommentar |
---|---|---|---|---|---|
1 | Savio | 13,5 | E | 2008 | Konv., kun godstrafikk |
Japan
No. | Navn | Lengde (km) | Konsept | Åpningsår | Kommentar |
---|---|---|---|---|---|
1 | Seikan | 53,9 | D+s | 1988 | Konv. |
2 | Hakkoda | 26,5 | D | 2010 | TBM |
3 | Iwate-Ichinohe | 25,8 | D | 2002 | |
4 | Iiyama | 22,2 | D | 2013 | |
5 | DaiShimizu | 22,2 | D | 1982 | |
6 | Shin-Kanmon | 18,7 | D | 1975 | |
7 | Rokko | 16,2 | D | 1972 | |
8 | Haruna | 15,4 | D | 1982 | |
9 | Gorigamine | 15,2 | D | 1997 | |
10 | Nakayama | 14,9 | D | 1982 | |
11 | Hokuriku | 13,9 | D | 1962 | |
12 | SinShimizu | 13,5 | E | 1967 | Dobling av eksisterende linje |
13 | Aki | 13 | D | 1975 | |
14 | Chikushi | 11,9 | D | 2013 | |
15 | KitaKyushu | 11,8 | D | 1975 | |
16 | Fukushima | 11,7 | D | 1982 | |
17 | Kubiki | 11,4 | D | 1969 | |
18 | Shiozawa | 11,2 | D | 1982 | |
19 | Akakura | 10,5 | E | 1997 | |
20 | Ikuta | 10,4 | D | 1976 | |
21 | Daisan-shibisan | 10 | D | 2004 |
Japan har totalt 21 jernbanetunneler over 10 km. De fleste tilhører det japanske høyhastighetsnettet. De bygger alle sine tunneler som ettløpstunneler.
Kina
No. | Navn | Lengde (km) | Konsept | Åpningsår | Kommentar |
---|---|---|---|---|---|
1 | Taihang | 27,9 | 2E | 2008 | |
2 | Wushaoling | 21,1 | 2E | 2006 | NATM |
3 | Qinling | 18,5 | 2E | 2002 | |
4 | Dayaoshan | 14,3 | D | 1987 | |
5 | Changliashang | 12,8 | D |
Vi har identifisert 5 lange driftssatte jernbanetunneler i Kina over 10 km. De 3 lengste er ettløpstunneler. De to andre er toløpstunneler.
Spania
No. | Navn | Lengde (km) | Konsept | Åpningsår | Kommentar |
---|---|---|---|---|---|
1 | Guadarrama | 28,4 | 2E | 2007 | TBM |
2 | Pajares | 24,7 | 2E | 2011-2013 | TBM |
Spania gjennomfører en meget ambisiøs utbygging av et omfattende høyhastighetsnett. Tunnelene bygges som ettløpstunneler.
Storbritannia
No. | Navn | Lengde (km) | Konsept | Åpningsår | Kommentar |
---|---|---|---|---|---|
1 | Kanaltunnelen | 50,5 | 2E+s | 1994 | TBM |
2 | Stratford west | 10,1 | 2E | 2007 | TBM |
Kanaltunnelen mellom Storbritannia og Frankrife er vel 50 km lang og er bygget som to ettløpstunneler med en separat rømnings-/servicetunnel.For Channel tunnel rail link som forbinder Kanaltunnelen med høyhastighetsbane til St.Pancras stasjon i London, er konseptet basert på borede ettløpstunneler. Faktorene for bestemmelse av konseptet var grunnforholdene og tilgjengelighet for rømningssjakter.
Referanser
- "Verdens lengste tunnelside", http://www.lotsberg.net/
- "Safety in railway tunnels and selection of tunnel concept", artikkel av Terje Andersen og Børre J. Paaske, Det Norske Veritas.